3. Представление произвольной функции алгебры логики в виде формулы алгебры логики.
Пусть F(x1, x2, …, xn) - произвольная функция алгебры логики п переменных. Рассмотрим формулу
которая составлена следующим образом: каждое слагаемое этой логической суммы представляет собой конъюнкцию, в которой первый член является значением функции F при некоторых определенных значениях переменных x1, x2, …, xn ,остальные же члены конъюнкции представляют собой переменные или их отрицания. При этом под знаком отрицания находятся те и только те переменные, которые в первом члене конъюнкции имеют значение 0.
Вместе с тем формула эта содержит в виде логических слагаемых всевозможные конъюнкции указанного вида.
Данная формула полностью определяет функцию F(x1, x2, …, xn) . Иначе говоря, значения функции F и формулы совпадают на всех наборах значений переменных x1, x2, …, xn.
Например, если x1 принимает значение 0, а остальные переменные принимают значение 1, то функция F принимает значение F(0,1,1,.. .1) . При этом логическое
слагаемое входящее в формулу , принимает также значение F(0,1,.. .1) , все остальные логические слагаемые формулы имеют значение 0. Действительно, в них знаки отрицания над переменными распределяются иначе, чем в рассмотренном слагаемом, но тогда при замене переменных теми же значениями в конъюнкцию войдет символ 0 без знака отрицания, символ 1 под знаком отрицания. В таком случае один из членов конъюнкции имеет значение 0, а поэтому вся конъюнкция имеет значение 0. В связи с этим на основании равносильности х v 0 х значением формулы является .F(0,l,...,l).
Ясно, что вид формулы может быть значительно упрощен, если в ней отбросить те логические слагаемые, в которых первый член конъюнкции имеет значение 0 (и, следовательно, вся конъюнкция имеет значение 0). Если же в логическом слагаемом первый член конъюнкции имеет значение 1, то, пользуясь равносильностью 1& х х, этот член конъюнкции можно не выписывать.
Таким образом, в результате получается формула, которая содержит только элементарные переменные высказывания и обладает следующими свойствами:
1) Каждое логическое слагаемое формулы содержит
все переменные, входящие в функцию F(x1, x2, …, xn).
2) Все логические слагаемые формулы различны.
3) Ни одно логическое слагаемое формулы не содержит одновременно переменную и ее отрицание.
4) Ни одно логическое слагаемое формулы не содержит одну и ту же переменную дважды.
Из приведенных рассуждении видно, что каждой не тождественно ложной функции соответствует единственная формула указанного вида.
Если функция F(x1, x2, …, xn) задана таблицей истинности, то соответствующая ей формула алгебры логики может быть получена следующим образом:
для каждого набора значений переменных, на котором функция F(x1, x2, …, xn) принимает значение 1, запишем конъюнкцию элементарных переменных высказываний, взяв за член конъюнкции хк ,если значение хк на указанном наборе значений переменных есть 1 и отрицание ,если значение хк есть 0. Дизъюнкция всех записанных конъюнкций и будет искомой формулой.
Пусть, например, функция F(x1, x2, х3) имеет следующую таблицу истинности:
x1 | x2 | x3 | F(x1, x2, x3) |
1 | 1 | 1 | 0 |
1 | 1 | 0 | 1 |
1 | 0 | 1 | 1 |
1 | 0 | 0 | 0 |
0 | 1 | 1 | 0 |
0 | 1 | 0 | 1 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
Для наборов значений переменных, на которых функция принимает значение 1составим дизъюнкцию соответствующих конъюнкций:
.
- Лекция 2
- Лекция 3
- Лекция 4
- Лекция 5
- Лекция 13
- Лекция 14
- Лекция 16
- Основные понятия
- Понятие множества. Способы задания множеств.
- Понятие множества. Способы задания множеств.
- Отношения между множествами.
- 3, Операции над множествами.
- Алгебра множеств.
- Теорема о количестве подмножеств конечного множества.
- Формула включений и исключений.
- Лекция 2
- 1.Понятие вектора. Прямое произведение множеств.
- 2.Теорема о количестве элементов прямого произведения.
- Понятие вектора. Прямое произведение множеств.
- Теорема о количестве элементов прямого произведения.
- Лекция 3
- 2. Понятие высказывания.
- 3. Логические операции над высказываниями
- 4.Формулы алгебры логики.
- Лекция 4
- 2. Важнейшие равносильности алгебры логики.
- 3.Равносильные преобразования формул.
- Задачи для самостоятельного решения
- Лекция 5
- Дизъюнктивная нормальная форма.
- Конъюнктивная нормальная форма.
- Проблема разрешимости.
- Лекция 6
- Функции алгебры логики.
- 3. Представление произвольной функции алгебры логики в виде формулы алгебры логики.
- 4.Приложения алгебры логики в технике (релейно-контактные схемы).
- Контрольные вопросы
- Лекция 7
- Совершенная дизъюнктивная нормальная форма.
- Совершенная конъюнктивная нормальная форма.
- Совершенная дизъюнктивная нормальная форма.
- 2.Совершенная конъюнктивная нормальная форма.
- Лекция 8
- 2.Понятие минимальной днф. Метод минимизирующих карт.
- 3.Метод Квайна.
- 4.Метод Карно.
- 5.Постановка задачи минимизации в геометрической форме.
- 6.Сокращенная днф.
- 7.Тупиковая днф. Днф Квайна.
- Лекция 9
- Некоторые логические операции. Двоичное сложение.
- Полином Жегалкина.
- Некоторые логические операции. Двоичное сложение.
- Полином Жегалкина.
- Лекция 10
- Полная система . Достаточное условие полноты.
- Критерий полноты системы булевых функций.
- Независимые системы. Базис замкнутого класса.
- Полная система. Достаточное условие полноты.
- Критерий полноты системы булевых функций.
- 3. Независимые системы. Базис замкнутого класса.
- Лекция 11
- Понятие предиката.
- Логические операции над предикатами.
- 1. Понятие предиката
- 2. Логические операции над предикатами
- Лекция 12
- 2. Формулы логики предикатов.
- Значение формулы логики предикатов.
- 4. Равносильные формулы логики предикатов.
- Лекция 13
- Построение противоположных утверждений.
- 3. Прямая, обратная и противоположная теоремы.
- 4. Необходимые и достаточные условия.
- 5. Доказательство методом от противного.
- Задачи для самостоятельного решения
- Лекция 14
- 2. Использование метода математической индукции для нахождения сумм конечного числа слагаемых
- 3. Использование метода математической индукции для доказательства неравенств и делимости выражений, зависящих от n на некоторое число
- 4. Обобщение метода математической индукции
- Контрольные вопросы
- Лекция 15
- Операции над бинарными отношениями.
- 3. Свойства бинарных отношений.
- 4. Специальные бинарные отношения.
- Контрольные вопросы
- Лекция 16
- Функция
- 1. 4. Отображение
- Обратная функция
- 2. Свойства отображений и функций
- 3.Операции над функциями. Свойства операций
- Контрольные вопросы
- Лекция 17
- Основные понятия .
- 2. Смежность, инцидентность, степени вершин.
- 3. Способы задания графов
- Маршруты в неориентированном графе
- Операции над графами.
- Связность. Компоненты связности
- Контрольные вопросы
- Лекция 18
- 2. Метрические характеристики неориентированного графа
- Минимальные маршруты в нагруженных графах
- Задачи на деревьях
- Цикловой ранг графа. Цикломатическое число
- Контрольные вопросы
- Лекция 19
- Эйлеровы цепи и циклы
- Гамильтоновы циклы и цепи
- Эйлеровы цепи и циклы
- Гамильтоновы циклы и цепи.
- Контрольные вопросы
- Лекция 20
- Двудольный граф. Условие существования двудольного графа
- Паросочетания . Реберные покрытия
- Двудольный граф. Условие существования двудольного графа
- Паросочетания. Реберные покрытия
- Контрольные вопросы
- Лекция 21
- Основные определения
- Алгоритм плоской укладки графа
- Контрольные вопросы
- Лекция 22
- Способы задания ориентированного графа
- Путь в ориентированном графе
- 4. Связность. Компоненты связности в орграфе
- Контрольные вопросы
- Лекция 23
- 2. Минимальные пути в нагруженных орграфах
- 3. Порядковая функция орграфа без контуров
- Контрольные вопросы