2. Формулы логики предикатов.
В логике предикатов будем пользоваться следующей символикой:
Символы р, q, r, ... — переменные высказывания, принимающие два значения: 1 - истина, 0 — ложь.
Предметные переменные - х, у, z, .... которые пробегают значения из некоторого множества М; x°, у°, z°, ... -предметные константы, то есть значения предметных переменных.
Р( .), F( .) - одноместные предикатные переменные; q(.,.,...,.), R(.,.,...,.) n-местные предикатные переменные. P0(.), Q0(. , . , …,.) - символы постоянных предикатов.
Символы логических операций:, v, ,- .
Символы кванторных операций: x , x.
Вспомогательные символы: скобки, запятые.
Определение формулы логики предикатов:
Каждое высказывание как переменное, так и постоянное, является формулой (элементарной).
Если F( .,.,...,.) – n- местная предикатная переменная или постоянный предикат, а х1, х2, …, хn - предметные переменные или предметные постоянные (не обязательно все различные), то F(х1, х2, …, хn) есть формула. Такая формула называется элементарной, в ней предметные переменные являются свободными, не связанными кванторами.
Если А и В — формулы, причем такие, что одна и та же предметная переменная не является в одной из них связанной, а в другой - свободной, то слова А v В , А& В, АВ есть формулы. В этих формулах те переменные, которые в исходных формулах были свободными, являются свободными, а те, которые были связанными, являются связанными.
Если А - формула, то - формула, и характер предметных переменных при переходе от формулы А к формуле не меняется.
Если А(х) - формула, в которую предметная переменная х входит свободно, то слова xA(х) и хА(х) являются формулами, причем предметная переменная входит в них связанно.
Всякое слово, отличное от тех, которые названы формулами в пунктах 1-5, не является формулой.
Например, если Р(х) и Q(x, у) - одноместный и двухместный предикаты, а q, r - переменные высказывания, то формулами будут слова: q, Р(х), P(x)Q(x°,y),
хР(х) xQ(x, у),
Не является формулой слово: xQ(x, y) Р(х). Здесь нарушено условие п.3, так как в формулуxQ(x, y) переменная х входит связано, а в формулу Р(х) переменная х входит свободно.
Выражение у(уР(х,у))VQ(x) не является формулой, т.к. квантор всеобщности на у навешан на формулу уР(х,у), в которой переменная у уже связана квантором существования.
Выражение у, хР(х, у) не является формулой, т.к. переменной х не присвоен квантор.
Из определения формулы логики предикатов ясно, что всякая формула алгебры высказываний является формулой логики предикатов.
-
Содержание
- Лекция 2
- Лекция 3
- Лекция 4
- Лекция 5
- Лекция 13
- Лекция 14
- Лекция 16
- Основные понятия
- Понятие множества. Способы задания множеств.
- Понятие множества. Способы задания множеств.
- Отношения между множествами.
- 3, Операции над множествами.
- Алгебра множеств.
- Теорема о количестве подмножеств конечного множества.
- Формула включений и исключений.
- Лекция 2
- 1.Понятие вектора. Прямое произведение множеств.
- 2.Теорема о количестве элементов прямого произведения.
- Понятие вектора. Прямое произведение множеств.
- Теорема о количестве элементов прямого произведения.
- Лекция 3
- 2. Понятие высказывания.
- 3. Логические операции над высказываниями
- 4.Формулы алгебры логики.
- Лекция 4
- 2. Важнейшие равносильности алгебры логики.
- 3.Равносильные преобразования формул.
- Задачи для самостоятельного решения
- Лекция 5
- Дизъюнктивная нормальная форма.
- Конъюнктивная нормальная форма.
- Проблема разрешимости.
- Лекция 6
- Функции алгебры логики.
- 3. Представление произвольной функции алгебры логики в виде формулы алгебры логики.
- 4.Приложения алгебры логики в технике (релейно-контактные схемы).
- Контрольные вопросы
- Лекция 7
- Совершенная дизъюнктивная нормальная форма.
- Совершенная конъюнктивная нормальная форма.
- Совершенная дизъюнктивная нормальная форма.
- 2.Совершенная конъюнктивная нормальная форма.
- Лекция 8
- 2.Понятие минимальной днф. Метод минимизирующих карт.
- 3.Метод Квайна.
- 4.Метод Карно.
- 5.Постановка задачи минимизации в геометрической форме.
- 6.Сокращенная днф.
- 7.Тупиковая днф. Днф Квайна.
- Лекция 9
- Некоторые логические операции. Двоичное сложение.
- Полином Жегалкина.
- Некоторые логические операции. Двоичное сложение.
- Полином Жегалкина.
- Лекция 10
- Полная система . Достаточное условие полноты.
- Критерий полноты системы булевых функций.
- Независимые системы. Базис замкнутого класса.
- Полная система. Достаточное условие полноты.
- Критерий полноты системы булевых функций.
- 3. Независимые системы. Базис замкнутого класса.
- Лекция 11
- Понятие предиката.
- Логические операции над предикатами.
- 1. Понятие предиката
- 2. Логические операции над предикатами
- Лекция 12
- 2. Формулы логики предикатов.
- Значение формулы логики предикатов.
- 4. Равносильные формулы логики предикатов.
- Лекция 13
- Построение противоположных утверждений.
- 3. Прямая, обратная и противоположная теоремы.
- 4. Необходимые и достаточные условия.
- 5. Доказательство методом от противного.
- Задачи для самостоятельного решения
- Лекция 14
- 2. Использование метода математической индукции для нахождения сумм конечного числа слагаемых
- 3. Использование метода математической индукции для доказательства неравенств и делимости выражений, зависящих от n на некоторое число
- 4. Обобщение метода математической индукции
- Контрольные вопросы
- Лекция 15
- Операции над бинарными отношениями.
- 3. Свойства бинарных отношений.
- 4. Специальные бинарные отношения.
- Контрольные вопросы
- Лекция 16
- Функция
- 1. 4. Отображение
- Обратная функция
- 2. Свойства отображений и функций
- 3.Операции над функциями. Свойства операций
- Контрольные вопросы
- Лекция 17
- Основные понятия .
- 2. Смежность, инцидентность, степени вершин.
- 3. Способы задания графов
- Маршруты в неориентированном графе
- Операции над графами.
- Связность. Компоненты связности
- Контрольные вопросы
- Лекция 18
- 2. Метрические характеристики неориентированного графа
- Минимальные маршруты в нагруженных графах
- Задачи на деревьях
- Цикловой ранг графа. Цикломатическое число
- Контрольные вопросы
- Лекция 19
- Эйлеровы цепи и циклы
- Гамильтоновы циклы и цепи
- Эйлеровы цепи и циклы
- Гамильтоновы циклы и цепи.
- Контрольные вопросы
- Лекция 20
- Двудольный граф. Условие существования двудольного графа
- Паросочетания . Реберные покрытия
- Двудольный граф. Условие существования двудольного графа
- Паросочетания. Реберные покрытия
- Контрольные вопросы
- Лекция 21
- Основные определения
- Алгоритм плоской укладки графа
- Контрольные вопросы
- Лекция 22
- Способы задания ориентированного графа
- Путь в ориентированном графе
- 4. Связность. Компоненты связности в орграфе
- Контрольные вопросы
- Лекция 23
- 2. Минимальные пути в нагруженных орграфах
- 3. Порядковая функция орграфа без контуров
- Контрольные вопросы