Оду первого порядка
В MathCad для решения ОДУ первого порядка применяется метод Рунге-Кутта 4 порядка. Этот метод осуществляется встроенной функцией оdesolve(t,t1). Запись уравнения и начального условия y(t0) осуществляется в блоке Given. Решение осуществляется относительно переменной t на интервале [t0,t1]. Все равенства в блоке – булевые, т. е. жирные знаки =. В программе 29 приведен пример решения того же дифференциального уравнения, что и в программах 26–28. Из программы также видны особенности построения графиков решения и вывода результата расчета на экран.
Этот способ решения дифференциального уравнения можно использовать и для расчетов изменений термодинамических функций в химической реакции по уравнениям (A-Г) так, как это сделано в программе 30. Решением y(t) в данном случае является изменение энтальпии в химической реакции. Сравнивая результаты работы программ 30 и 22, можно убедиться в том, что расчет изменения энтальпии реакции по дифференциальному уравнению и интегральным формам совпадают. Начало программы – исходные данные пропущены. Вам надо их скопировать из программы 22.
Программа 29
Программа 30
- Введение
- Глава 1 аппроксимация методом наименьших квадратов
- Программа 1
- Контрольные вопросы к главе 1
- Расчетная многовариантная задача № 1
- Варианты творческих заданий
- Глава 2. Способы сглаживания экспериментальных данных в mathcad
- Контрольные вопросы к главе 2
- Расчетная многовариантная задача № 2
- Варианты творческих заданий
- Глава 3. Интерполяция и экстраполяция
- Контрольные вопросы к главе 3
- Расчетная многовариантная задача № 3
- Варианты творческих заданий
- Глава 4. Оптимизация
- Методы одномерной оптимизации
- Контрольные вопросы к главе 4
- Расчетная многовариантная задача № 4
- Варианты творческих заданий
- Глава 5. Интегрирование
- Вычисление определенных интегралов
- Метод прямоугольников
- Метод трапеций
- Численное интегрирование с помощью квадратурных формул
- Метод парабол Симпсона
- Интегрирование с помощью встроенных функций MathCad
- Интегрирование функции, заданной таблично
- Интегральные уравнения получены на основании температурной зависимости теплоемкости индивидуального вещества:
- Контрольные вопросы к главе 5
- Расчетное многовариантное задание № 5
- Расчетное многовариантное задание № 6
- Варианты творческих заданий
- Глава 6. Дифференцирование
- Решение дифференциальных уравнений
- Метод Эйлера
- М етод Эйлера-Коши
- Метод Рунге-Кутта 4 порядка
- Решение дифференциальных уравнений с помощью встроенных функций MathCad
- Оду первого порядка
- Оду второго и выше порядка
- Решение систем оду первого порядка
- Решение «жестких» систем оду
- Контрольные вопросы к главе 6
- Расчетная многовариантная задача № 7
- Расчетная многовариантная задача № 8
- Литература
- Оглавление