Оду второго и выше порядка
Решение ОДУ второго порядка в принципе ничем не отличается от решения ОДУ первого порядка. Так же в блоке Given – odesolve описывается само дифференциальное уравнение и вслед за ним – два (а не одно как в ОДУ первого порядка) начальных условия – для функции и для ее первой производной (программа 31). Постоянные и функции, входящие в дифференциальное уравнение, можно (и нужно!) объявлять вне блока Given.
Программа 31
С помощью этой встроенной процедуры можно решать и задачи химической термодинамики, например дифференциальное уравнение второго порядка
(66)
Решая это уравнение, мы получаем величину rG0T , по которой легко рассчитать константу равновесия реакции. Первой производной rG0T является –rS0T (см. таблицу 7). Начальным решением в этом случае будет rG0298 и ее первая производная –rS0298. Программа 32, также как и программа 30, является лишь заключительным фрагментом полной программы, так как начало программы – ввод табличных данных и вычисление изменений термодинамических функций при стандартной температуре 298 К – пропущены. Их можно скопировать из программы 22.
С помощью MathCad можно решать уравнения и более высоких порядков, при этом если порядок производной равен n, то нужно указывать и n начальных условий.
ОДУ высоких порядков (в том числе и второго) можно привести к решению системы из n дифференциальных уравнений первого порядка. Это делают методом замены переменных. Преимущество решения системы дифференциальных уравнений состоит в том, что в качестве решения кроме функции получаем ее первые, вторые и т. д. до n-1 производной.
Например, уравнение (66) можно привести к системе из двух уравнений первого порядка:
(67)
Программа 32
- Введение
- Глава 1 аппроксимация методом наименьших квадратов
- Программа 1
- Контрольные вопросы к главе 1
- Расчетная многовариантная задача № 1
- Варианты творческих заданий
- Глава 2. Способы сглаживания экспериментальных данных в mathcad
- Контрольные вопросы к главе 2
- Расчетная многовариантная задача № 2
- Варианты творческих заданий
- Глава 3. Интерполяция и экстраполяция
- Контрольные вопросы к главе 3
- Расчетная многовариантная задача № 3
- Варианты творческих заданий
- Глава 4. Оптимизация
- Методы одномерной оптимизации
- Контрольные вопросы к главе 4
- Расчетная многовариантная задача № 4
- Варианты творческих заданий
- Глава 5. Интегрирование
- Вычисление определенных интегралов
- Метод прямоугольников
- Метод трапеций
- Численное интегрирование с помощью квадратурных формул
- Метод парабол Симпсона
- Интегрирование с помощью встроенных функций MathCad
- Интегрирование функции, заданной таблично
- Интегральные уравнения получены на основании температурной зависимости теплоемкости индивидуального вещества:
- Контрольные вопросы к главе 5
- Расчетное многовариантное задание № 5
- Расчетное многовариантное задание № 6
- Варианты творческих заданий
- Глава 6. Дифференцирование
- Решение дифференциальных уравнений
- Метод Эйлера
- М етод Эйлера-Коши
- Метод Рунге-Кутта 4 порядка
- Решение дифференциальных уравнений с помощью встроенных функций MathCad
- Оду первого порядка
- Оду второго и выше порядка
- Решение систем оду первого порядка
- Решение «жестких» систем оду
- Контрольные вопросы к главе 6
- Расчетная многовариантная задача № 7
- Расчетная многовариантная задача № 8
- Литература
- Оглавление