Интегрирование функции, заданной таблично
Если подынтегральная функция задана таблично в виде пар значений x(i),y(i) (узлов), то интеграл можно вычислить несколькими способами. Первый заключается в том, чтобы выразить зависимость y от x какой-либо подходящей, т. е. решить задачу аппроксимации или интерполяции табличных данных. Затем эта зависимость используется для интегрирования функции методами, описанными выше. Выбор аппроксимирующей и интерполирующей функции, а также методы расчета их параметров описаны в соответствующем разделе.
Задачу интегрирования таблично заданной функции можно решить, не прибегая к построению аппроксимирующей (интерполирующей) функции. Если табличные данные приводятся с постоянным и достаточно маленьким шагом по х, то можно применить квадратурные формулы. Пределы интегрирования могут быть любыми в пределах табличных данных и совпадать с узлами. В программе 20 выполнен расчет с помощью метода Симпсона (он оптимален для интегрирования табличных зависимостей). Единственным его недостатком является требование четности интервалов интегрирования N. А изменить количество интервалов интегрирования таблично заданной функции мы не можем. Для метода трапеций этой проблемы нет и в программе 20 приведен также расчет методом трапеций. Для иллюстрации точности интегрирования в программе 20 в качестве табличных данных взята синусоидальная зависимость с точностью до третьего знака после запятой. С такой же точностью поручены, как видно из листинга программы, и значения интегралов. Это правило выполняется всегда: чем точнее задана таблица, тем точнее можно вычислить интеграл и тем менее точный метод интегрирования можно использовать.
Если же шаг интегрирования не постоянный. А это часто бывает с экспериментальными табличными данными, то лучше воспользоваться первым способом: построить аппроксимирующую (интерполирующую) функцию. В программе 21 приведены три наиболее компактные формы интерполяции и аппроксимации табличных данных для целей интегрирования. Как видно из листинга программы, наибольшую точность дают кубическая сплайн-интерполяция и аппроксимация полиномом (в данном случае четвертой степени).
Программа 20
Программа 21
Расчет изменений термодинамических функций в ходе химической реакции по интегральным уравнениям
В основе расчета изменений термодинамических функций: энтальпии rH0Т, энтропии rS0Т и энергии Гиббса rG0Т , а также константы равновесия для химической реакции лежат соответствующие дифференциальные уравнения и их интегральные формы, представленные в таблице 7 [11].
Таблица 7
Дифференциальныe уравнения | Интегральные формы |
(А) |
|
(Б) |
|
(В)
(Г) |
|
(Д) |
|
Вспомогательные константы и функции | |
|
- Введение
- Глава 1 аппроксимация методом наименьших квадратов
- Программа 1
- Контрольные вопросы к главе 1
- Расчетная многовариантная задача № 1
- Варианты творческих заданий
- Глава 2. Способы сглаживания экспериментальных данных в mathcad
- Контрольные вопросы к главе 2
- Расчетная многовариантная задача № 2
- Варианты творческих заданий
- Глава 3. Интерполяция и экстраполяция
- Контрольные вопросы к главе 3
- Расчетная многовариантная задача № 3
- Варианты творческих заданий
- Глава 4. Оптимизация
- Методы одномерной оптимизации
- Контрольные вопросы к главе 4
- Расчетная многовариантная задача № 4
- Варианты творческих заданий
- Глава 5. Интегрирование
- Вычисление определенных интегралов
- Метод прямоугольников
- Метод трапеций
- Численное интегрирование с помощью квадратурных формул
- Метод парабол Симпсона
- Интегрирование с помощью встроенных функций MathCad
- Интегрирование функции, заданной таблично
- Интегральные уравнения получены на основании температурной зависимости теплоемкости индивидуального вещества:
- Контрольные вопросы к главе 5
- Расчетное многовариантное задание № 5
- Расчетное многовариантное задание № 6
- Варианты творческих заданий
- Глава 6. Дифференцирование
- Решение дифференциальных уравнений
- Метод Эйлера
- М етод Эйлера-Коши
- Метод Рунге-Кутта 4 порядка
- Решение дифференциальных уравнений с помощью встроенных функций MathCad
- Оду первого порядка
- Оду второго и выше порядка
- Решение систем оду первого порядка
- Решение «жестких» систем оду
- Контрольные вопросы к главе 6
- Расчетная многовариантная задача № 7
- Расчетная многовариантная задача № 8
- Литература
- Оглавление