Численное интегрирование с помощью квадратурных формул
Общий вид квадратурной формулы Котеса при постоянном шаге интегрирования можно представить уравнением:
, (43)
где Ai и m – числа Котеса. Значения чисел Котеса зависят от степени аппроксимирующего полинома (n). Причем их значения получены таким образом, чтобы квадратурная формула была точной, а не приближенной для всех вырожденных полиномов типа у = х0, у = х, у = х2, у = х3,..., у = хn, если сама y(x) является полиномом степени n. Для аппроксимирующих полиномов меньше шестой степени числа Котеса приведены в таблице 6.
Таблица 6
n | M | A0 | A1 | A2 | A3 | A4 | A5 |
0 | 1 | 1 | метод прямоугольников | ||||
1 | 2 | 1 | 1 | метод трапеций | |||
2 | 6 | 1 | 4 | 1 | метод парабол Симпcона | ||
3 | 8 | 1 | 3 | 3 | 1 | полином третьей степени | |
4 | 90 | 7 | 32 | 12 | 32 | 7 |
|
5 | 288 | 19 | 75 | 50 | 50 | 75 | 19 |
6 | 840 | 41 | 216 | 27 | 272 | 27 | 216 |
При подстановке чисел Аi и N из таблицы 6 в уравнение при n = 0 и n = 1 получаются формулы интегрирования методами прямоугольников и трапеций, выведенные нами ранее (36) и (40). При n = 2 можно получить формулы метода Симпсона (метод парабол).
- Введение
- Глава 1 аппроксимация методом наименьших квадратов
- Программа 1
- Контрольные вопросы к главе 1
- Расчетная многовариантная задача № 1
- Варианты творческих заданий
- Глава 2. Способы сглаживания экспериментальных данных в mathcad
- Контрольные вопросы к главе 2
- Расчетная многовариантная задача № 2
- Варианты творческих заданий
- Глава 3. Интерполяция и экстраполяция
- Контрольные вопросы к главе 3
- Расчетная многовариантная задача № 3
- Варианты творческих заданий
- Глава 4. Оптимизация
- Методы одномерной оптимизации
- Контрольные вопросы к главе 4
- Расчетная многовариантная задача № 4
- Варианты творческих заданий
- Глава 5. Интегрирование
- Вычисление определенных интегралов
- Метод прямоугольников
- Метод трапеций
- Численное интегрирование с помощью квадратурных формул
- Метод парабол Симпсона
- Интегрирование с помощью встроенных функций MathCad
- Интегрирование функции, заданной таблично
- Интегральные уравнения получены на основании температурной зависимости теплоемкости индивидуального вещества:
- Контрольные вопросы к главе 5
- Расчетное многовариантное задание № 5
- Расчетное многовариантное задание № 6
- Варианты творческих заданий
- Глава 6. Дифференцирование
- Решение дифференциальных уравнений
- Метод Эйлера
- М етод Эйлера-Коши
- Метод Рунге-Кутта 4 порядка
- Решение дифференциальных уравнений с помощью встроенных функций MathCad
- Оду первого порядка
- Оду второго и выше порядка
- Решение систем оду первого порядка
- Решение «жестких» систем оду
- Контрольные вопросы к главе 6
- Расчетная многовариантная задача № 7
- Расчетная многовариантная задача № 8
- Литература
- Оглавление