16.4. Функции более высокого порядка
В функциональном программировании функция является обычным объектом, имеющим тип, поэтому она может быть аргументом других функций. Например, мы можем создать обобщенную (родовую) форму для insert_element (вставить элемент), просто добавляя функцию compare как дополнительный аргумент:
fun general_insert_element compare x [ ] = [х]
| general_insert_element compare x head:: tail =
if compare x head
then x::head::tail
else head:: (general_insert_element compare x tail)
Если string_compare является функцией от string к boolean:
string_compare: (string x string)—> bool
применение general_insert_element к этому аргументу:
fun string_insert = general_insert_element string_compare
дает функцию следующего типа:
string -> string list -> string list
Обратите внимание, что, в отличие от процедурных языков, это обобщение достигается естественно, без какого-либо дополнительного синтаксиса или семантики, наподобие generic или template.
Но какой тип у general_insert_element? Первый аргумент должен иметь тип «функция от пары чего-либо к булеву значению», второй аргумент должен иметь тип этого самого «чего-либо», а третий параметр является списком этих «чего-либо». Типовые переменные (type variables) используются в качестве краткой записи для этого «чего-либо», и, таким образом, тип функции будет следующим:
general_insert_element: (('t x 't) -> bool) -> 't -> 't list
где типовые переменные записаны в языке ML как идентификаторы с предшествующим
апострофом
Использование функций более высокого порядка, т. е. функций, аргументами которых являются функции, не ограничено такими статическими конструкциями, как обобщения. Чрезвычайно полезная функция — тар:
fun map f [] = [ ]
| mар f head :: tail = (f head):: (map f tail)
Эта функция применяет первый аргумент к списку значений, производя список результатов. Например:
map even [1, 3, 5, 2, 4, 6] = [false, false, false, true, true, true]
map min [(1,5), (4,2), (8,1)] = [1,2,1]
Этого фактически невозможно достичь в процедурных языках; самое большее, мы могли бы написать подпрограмму, которая получает указатель на функцию в качестве аргумента, но мы потребовали бы разных подпрограмм для каждой допустимой сигнатуры аргумента функции.
Обратите внимание, что эта конструкция надежная. Тип тар следующий:
mар: (t1 -> t2) -> 't1 list -> t2 list
Это означает, что элементы списка аргументов t1 list все должны быть совместимы с аргументом функции t1, а список результата t2 list будет состоять только из элементов, имеющих тип результата функции t2.
Функции более высокого порядка абстрагируются от большинства управляющих структур, которые необходимы в процедурных языках. В другом примере функция accumulate реализует «составное» применение функции, а не создает список результатов, подобно mар:
fun accumulate f initial [] = initial
| accumulate f initial head::tail - accumulate f (f initial head) tail
Функция accumulate может использоваться для создания ряда полезных функций. Функции
fun minlist = accumulate min maxint
fun sumlist = accumulate "+" 0
вычисляют минимальное значение целочисленного списка и сумму целочисленного списка соответственно. Например:
minlist [3, 1,2] =
accumulate min maxint [3, 1,2] =
accumulate min (min maxint 3) [1,2] =
accumulate min 3 [1, 2] =
accumulate min (min 3 1) [2] =
accumulate min 1 [2] =
accumulate min (min 1 2) [] =
accumulate min 1 [] =
1
Функции более высокого порядка не ограничиваются списками; можно написать функции, которые обходят деревья и применяют функцию в каждом узле. Кроме того, функции могут быть определены на типовых переменных так, чтобы их можно было использовать без изменений при определении новых типов данных.
- Глава 1
- 1.2. Процедурные языки
- 1.3. Языки, ориентированные на данные
- 1.4. Объектно-ориентированные языки
- 1.5. Непроцедурные языки
- 1.6. Стандартизация
- 1.7. Архитектура компьютера
- 1.8. Вычислимость
- 1.9. Упражнения
- Глава 2
- 2.2. Семантика
- 2.3. Данные
- 2.4. Оператор присваивания
- 2.5. Контроль соответствия типов
- 2.7. Подпрограммы
- 2.8. Модули
- 2.9. Упражнения
- Глава 3
- 3.1. Редактор
- 3.2. Компилятор
- 3.3. Библиотекарь
- 3.4. Компоновщик
- 3.5. Загрузчик
- 3.6. Отладчик
- 3.7. Профилировщик
- 3.8. Средства тестирования
- 3.9. Средства конфигурирования
- 3.10. Интерпретаторы
- 3.11. Упражнения
- Глава 4
- 4.1. Целочисленные типы
- I: Integer; -- Целое со знаком в языке Ada
- 4.2. Типы перечисления
- 4.3. Символьный тип
- 4.4. Булев тип
- 4.5. Подтипы
- 4.6. Производные типы
- 4.7. Выражения
- 4.8. Операторы присваивания
- 4.9. Упражнения
- Глава 5
- 5.1. Записи
- 5.2. Массивы
- 5.3. Массивы и контроль соответствия типов
- Подтипы массивов в языке Ada
- 5.5. Строковый тип
- 5.6. Многомерные массивы
- 5.7. Реализация массивов
- 5.8. Спецификация представления
- 5.9. Упражнения
- Глава 6
- 6.1. Операторы switch и case
- 6.2. Условные операторы
- 6.3. Операторы цикла
- 6.4. Цикл for
- 6.5. «Часовые»
- 6.6. Инварианты
- 6.7. Операторы goto
- 6.8. Упражнения
- Глава 7
- 7.1. Подпрограммы: процедуры и функции
- 7.2. Параметры
- 7.3. Передача параметров подпрограмме
- 7.4. Блочная структура
- 7.5. Рекурсия
- 7.6. Стековая архитектура
- 7.7. Еще о стековой архитектуре
- 7.8. Реализация на процессоре Intel 8086
- 7.9. Упражнения
- Глава 8
- 8.1 . Указательные типы
- 8.2. Структуры данных
- 8.3. Распределение памяти
- 8.4. Алгоритмы распределения динамической памяти
- 8.5. Упражнения
- Глава 9
- 9.1. Представление вещественных чисел
- 9.2. Языковая поддержка вещественных чисел
- 9.3. Три смертных греха
- Вещественные типы в языке Ada
- 9.5. Упражнения
- Глава 10
- 10.1. Преобразование типов
- 10.2. Перегрузка
- 10.3. Родовые (настраиваемые) сегменты
- 10.4. Вариантные записи
- 10.5. Динамическая диспетчеризация
- 10.6. Упражнения
- Глава 11
- 11.1. Требования обработки исключительных ситуаций
- 11.2. Исключения в pl/I
- 11.3. Исключения в Ada
- 11.5. Обработка ошибок в языке Eiffei
- 11.6. Упражнения
- Глава 12
- 12.1. Что такое параллелизм?
- 12.2. Общая память
- 12.3. Проблема взаимных исключений
- 12.4. Мониторы и защищенные переменные
- 12.5. Передача сообщений
- 12.6. Язык параллельного программирования оссаm
- 12.7. Рандеву в языке Ada
- 12.9. Упражнения
- Глава 13
- 13.1. Раздельная компиляция
- 13.2. Почему необходимы модули?
- 13.3. Пакеты в языке Ada
- 13.4. Абстрактные типы данных в языке Ada
- 13.6. Упражнения
- Глава 14
- 14.1. Объектно-ориентированное проектирование
- В каждом объекте должно скрываться одно важное проектное решение.
- 14.3. Наследование
- 14.5. Объектно-ориентированное программирование на языке Ada 95
- Динамический полиморфизм в языке Ada 95 имеет место, когда фактический параметр относится к cw-типу, а формальный параметр относится к конкретному типу.
- 14.6. Упражнения
- Глава 15
- 1. Структурированные классы.
- 15.1. Структурированные классы
- 5.2. Доступ к приватным компонентам
- 15.3. Данные класса
- 15.4. Язык программирования Eiffel
- Если свойство унаследовано от класса предка более чем одним путем, оно используется совместно; в противном случае свойства реплицируются.
- 15.5. Проектные соображения
- 15.6. Методы динамического полиморфизма
- 15.7. Упражнения
- 5Непроцедурные
- Глава 16
- 16.1. Почему именно функциональное программирование?
- 16.2. Функции
- 16.3. Составные типы
- 16.4. Функции более высокого порядка
- 16.5. Ленивые и жадные вычисления
- 16.6. Исключения
- 16.7. Среда
- 16.8. Упражнения
- Глава 17
- 17.2. Унификация
- 17.4. Более сложные понятия логического программирования
- 17.5. Упражнения
- Глава 18
- 18.1. Модель Java
- 18.2. Язык Java
- 18.3. Семантика ссылки
- 18.4. Полиморфные структуры данных
- 18.5. Инкапсуляция
- 18.6. Параллелизм
- 18.7. Библиотеки Java
- 8.8. Упражнения