9.3. Три смертных греха
Младший значащий разряд результата каждой операции с плавающей точкой может быть неправильным из-за ошибок округления. Программисты, кото-ре пишут программное обеспечение для численных расчетов, должны хоро-шо разбираться в методах оценки и контроля этих ошибок. Вот три грубые ошибки, которые могут произойти:
исчезновение операнда,
умножение ошибки,
потеря значимости.
Операнд сложения или вычитания может исчезнуть, если он относительно мал по сравнению с другим операндом. При десятичной арифметике с пятью цифрами:
0.1234 х 103 + 0.1234 х 10-4 = 0.1234 х 103
Маловероятно, что преподаватель средней школы учил вас, что х + у = х для ненулевого у, но именно это здесь и произошло!
Умножение ошибки — это большая абсолютная ошибка, которая может появиться при использовании арифметики с плавающей точкой, даже если относительная ошибка мала. Обычно это является результатом умножения деления. Рассмотрим вычисление х • х:
0.1234 х103 • 0.1234 х 103 = 0.1522 х 105
и предположим теперь, что при вычислении х произошла ошибка на единицу младшего разряда, что соответствует абсолютной ошибке 0.1:
0.1235 х 103 • 0.1235 х 103 = 0.1525 х 105
Абсолютная ошибка теперь равна 30, что в 300 раз превышает ошибку перед умножением.
Наиболее грубая ошибка — полная потеря значимости, вызванная вычитанием почти равных чисел:
C |
float f1= 0.12342;
float f2 = 0.12346;
B математике f2 -f1 = 0.00004, что, конечно, вполне представимо как четырехразрядное число с плавающей точкой: 0.4000 х 10-4. Однако программа, вы-числяющая f2 - f 1 в четырехразрядном представлении с плавающей точкой, даст ответ:
0.1235 10°-0.1234x10° = 0.1000 х 10-3
что даже приблизительно не является приемлемым ответом.
Потеря значимости встречается намного чаще, чем можно было бы предположить, потому что проверка на равенство обычно реализуется вычитанием и последующим сравнением с нулем. Следующий условный оператор, таким образом, совершенно недопустим:
C |
f2=…;
if (f1 ==f2)...
Самая невинная перестройка выражений для f 1 и f2, независимо от того, сделана она программистом или оптимизатором, может вызвать переход в условном операторе по другой ветке. Правильный способ проверки равенства с плавающей точкой состоит в том, чтобы ввести малую величину:
C |
if ((fabs(f2-f1))<Epsilon)...
и затем сравнить абсолютное значение разности с малой величиной. По той же самой причине нет существенного различия между < = и < при вычислениях с плавающей точкой.
Ошибки в вычислениях с плавающей точкой часто можно уменьшить изменением порядка действий. Поскольку сложение производится слева направо, четырехразрядное десятичное вычисление
1234.0 + 0.5678 + 0.5678 = 1234.0
лучше делать как:
0.5678 + 0.5678 + 1234.0 = 1235.0
чтобы не было исчезновения слагаемых.
В качестве другого примера рассмотрим арифметическое тождество:
(х+у)(х-у)=х2-у2
и используем его для улучшения точности вычисления:
X, Y: Float_4;
Z: Float_7;
Ada |
Z := Float_7(X*X - Y*Y); -- или так?
Если мы положим х = 1234.0 и у = 0.6, правильное значение этого выражения будет равно 1522755.64. Результаты, вычисленные с точностью до восьми цифр, таковы:
(1234.0 + 0.6) • (1234.0-0.6) =1235.0 • 1233.0=1522755.0
и
(1234.0 • 1234.0)-(0.6 • 0.6) = 1522756.0-0.36 =1522756.0
При вычислении (х + у) (х- у) небольшая ошибка, являющаяся результатом сложения и вычитания, значительно возрастает при умножении. При вычислении по формуле х2 - у2 уменьшается ошибка от исчезновения слагаемого и результат получается более точным.
- Глава 1
- 1.2. Процедурные языки
- 1.3. Языки, ориентированные на данные
- 1.4. Объектно-ориентированные языки
- 1.5. Непроцедурные языки
- 1.6. Стандартизация
- 1.7. Архитектура компьютера
- 1.8. Вычислимость
- 1.9. Упражнения
- Глава 2
- 2.2. Семантика
- 2.3. Данные
- 2.4. Оператор присваивания
- 2.5. Контроль соответствия типов
- 2.7. Подпрограммы
- 2.8. Модули
- 2.9. Упражнения
- Глава 3
- 3.1. Редактор
- 3.2. Компилятор
- 3.3. Библиотекарь
- 3.4. Компоновщик
- 3.5. Загрузчик
- 3.6. Отладчик
- 3.7. Профилировщик
- 3.8. Средства тестирования
- 3.9. Средства конфигурирования
- 3.10. Интерпретаторы
- 3.11. Упражнения
- Глава 4
- 4.1. Целочисленные типы
- I: Integer; -- Целое со знаком в языке Ada
- 4.2. Типы перечисления
- 4.3. Символьный тип
- 4.4. Булев тип
- 4.5. Подтипы
- 4.6. Производные типы
- 4.7. Выражения
- 4.8. Операторы присваивания
- 4.9. Упражнения
- Глава 5
- 5.1. Записи
- 5.2. Массивы
- 5.3. Массивы и контроль соответствия типов
- Подтипы массивов в языке Ada
- 5.5. Строковый тип
- 5.6. Многомерные массивы
- 5.7. Реализация массивов
- 5.8. Спецификация представления
- 5.9. Упражнения
- Глава 6
- 6.1. Операторы switch и case
- 6.2. Условные операторы
- 6.3. Операторы цикла
- 6.4. Цикл for
- 6.5. «Часовые»
- 6.6. Инварианты
- 6.7. Операторы goto
- 6.8. Упражнения
- Глава 7
- 7.1. Подпрограммы: процедуры и функции
- 7.2. Параметры
- 7.3. Передача параметров подпрограмме
- 7.4. Блочная структура
- 7.5. Рекурсия
- 7.6. Стековая архитектура
- 7.7. Еще о стековой архитектуре
- 7.8. Реализация на процессоре Intel 8086
- 7.9. Упражнения
- Глава 8
- 8.1 . Указательные типы
- 8.2. Структуры данных
- 8.3. Распределение памяти
- 8.4. Алгоритмы распределения динамической памяти
- 8.5. Упражнения
- Глава 9
- 9.1. Представление вещественных чисел
- 9.2. Языковая поддержка вещественных чисел
- 9.3. Три смертных греха
- Вещественные типы в языке Ada
- 9.5. Упражнения
- Глава 10
- 10.1. Преобразование типов
- 10.2. Перегрузка
- 10.3. Родовые (настраиваемые) сегменты
- 10.4. Вариантные записи
- 10.5. Динамическая диспетчеризация
- 10.6. Упражнения
- Глава 11
- 11.1. Требования обработки исключительных ситуаций
- 11.2. Исключения в pl/I
- 11.3. Исключения в Ada
- 11.5. Обработка ошибок в языке Eiffei
- 11.6. Упражнения
- Глава 12
- 12.1. Что такое параллелизм?
- 12.2. Общая память
- 12.3. Проблема взаимных исключений
- 12.4. Мониторы и защищенные переменные
- 12.5. Передача сообщений
- 12.6. Язык параллельного программирования оссаm
- 12.7. Рандеву в языке Ada
- 12.9. Упражнения
- Глава 13
- 13.1. Раздельная компиляция
- 13.2. Почему необходимы модули?
- 13.3. Пакеты в языке Ada
- 13.4. Абстрактные типы данных в языке Ada
- 13.6. Упражнения
- Глава 14
- 14.1. Объектно-ориентированное проектирование
- В каждом объекте должно скрываться одно важное проектное решение.
- 14.3. Наследование
- 14.5. Объектно-ориентированное программирование на языке Ada 95
- Динамический полиморфизм в языке Ada 95 имеет место, когда фактический параметр относится к cw-типу, а формальный параметр относится к конкретному типу.
- 14.6. Упражнения
- Глава 15
- 1. Структурированные классы.
- 15.1. Структурированные классы
- 5.2. Доступ к приватным компонентам
- 15.3. Данные класса
- 15.4. Язык программирования Eiffel
- Если свойство унаследовано от класса предка более чем одним путем, оно используется совместно; в противном случае свойства реплицируются.
- 15.5. Проектные соображения
- 15.6. Методы динамического полиморфизма
- 15.7. Упражнения
- 5Непроцедурные
- Глава 16
- 16.1. Почему именно функциональное программирование?
- 16.2. Функции
- 16.3. Составные типы
- 16.4. Функции более высокого порядка
- 16.5. Ленивые и жадные вычисления
- 16.6. Исключения
- 16.7. Среда
- 16.8. Упражнения
- Глава 17
- 17.2. Унификация
- 17.4. Более сложные понятия логического программирования
- 17.5. Упражнения
- Глава 18
- 18.1. Модель Java
- 18.2. Язык Java
- 18.3. Семантика ссылки
- 18.4. Полиморфные структуры данных
- 18.5. Инкапсуляция
- 18.6. Параллелизм
- 18.7. Библиотеки Java
- 8.8. Упражнения