5.5. Строковый тип
В основном строки — это просто массивы символов, но для удобства программирования необходима дополнительная языковая поддержка. Первое требование: для строк нужен специальный синтаксис, в противном случае работать с массивами символов было бы слишком утомительно. Допустимы оба следующих объявления, но, конечно, первая форма намного удобнее:
char s[]= "Hello world";
chars[] = {‘H’,’e’,’l’,’o’,’ ‘,’w’,’o’,’r’,’l’,’d’,’/0’};
Затем нужно найти некоторый способ работы с длиной строки. Вышеупомянутый пример уже показывает, что компилятор может определить размер I строки без явного его задания программистом. Язык С использует соглаше-I ние о представлении строк, согласно которому первый обнаруженный нулевой байт завершает строку. Обработка строк в С обычно содержит цикл while вида:
C |
Основной недостаток этого метода состоит в том, что если завершающий ноль почему-либо отсутствует, то память может быть затерта, так же как и при любом выходе за границы массива:
C |
для нулевого байта*/
chart[11];
strcpy(t, s); /* Копировать set. Какой длины s? */
Другие недостатки этого метода:
• Строковые операции требуют динамического выделения и освобождения памяти, которые относительно неэффективны.
• Обращения к библиотечным строковым функциям приводят к повторным вычислениям длин строк.
• Нулевой байт не может быть частью строки.
Альтернативное решение, используемое некоторыми диалектами языка Pascal, состоит в том, чтобы включить явный байт длины как неявный нулевой символ строки, чья максимальная длина определяется при объявлении:
S:String[10];
Pascal |
writeln(S);
S:='Hello';
writeln(S);
Сначала программа выведет «Hello worl», так как строка будет усечена до объявленной длины. Затем выведет «Hello», поскольку writeln принимает во внимание неявную длину. К сожалению, это решение также небезупречно, потому что возможно непосредственное обращение к скрытому байту длины и затирание памяти:
Pascal |
s[0]:=15;
В Ada есть встроенный тип неограниченного массива, называемый String, со следующим определением:
Ada |
type String is array(Positive range <>) of Character;
Каждая строка должна быть фиксированной длины и объявлена с индексным ограничением:
-
Ada
S:String(1..80);
В отличие от языка С, где вся обработка строк выполняется с использованием библиотечных процедур, подобных strcpy, в языке Ada над строками допускаются такие операции, как конкатенация «&», равенство и операции отношения, подобные «<». Поскольку строго предписан контроль соответствия типов, нужно немного потренироваться с атрибутами, чтобы заставить все заработать:
Ada |
S2: constant String := "world";
T: String(1 .. S1 'Length + 1 + S2'Length) := S1 & ' ' & S2;
Put(T); -- Напечатает Hello world
Точная длина Т должна быть вычислена до того, как выполнится присваивание! К счастью, Ada поддерживает атрибуты массива и конструкцию для создания подмассивов (называемых сечениями — slices), которые позволяют выполнять такие вычисления переносимым способом.
Ada 83 предоставляет базисные средства для определения строк нефиксированной длины, но не предлагает необходимых библиотечных подпрограмм для обработки строк. Чтобы улучшить переносимость, в Ada 95 определены стандартные библиотеки для всех трех категорий строк: фиксированных, изменяемых (как в языке Pascal) и динамических (как в С).
- Глава 1
- 1.2. Процедурные языки
- 1.3. Языки, ориентированные на данные
- 1.4. Объектно-ориентированные языки
- 1.5. Непроцедурные языки
- 1.6. Стандартизация
- 1.7. Архитектура компьютера
- 1.8. Вычислимость
- 1.9. Упражнения
- Глава 2
- 2.2. Семантика
- 2.3. Данные
- 2.4. Оператор присваивания
- 2.5. Контроль соответствия типов
- 2.7. Подпрограммы
- 2.8. Модули
- 2.9. Упражнения
- Глава 3
- 3.1. Редактор
- 3.2. Компилятор
- 3.3. Библиотекарь
- 3.4. Компоновщик
- 3.5. Загрузчик
- 3.6. Отладчик
- 3.7. Профилировщик
- 3.8. Средства тестирования
- 3.9. Средства конфигурирования
- 3.10. Интерпретаторы
- 3.11. Упражнения
- Глава 4
- 4.1. Целочисленные типы
- I: Integer; -- Целое со знаком в языке Ada
- 4.2. Типы перечисления
- 4.3. Символьный тип
- 4.4. Булев тип
- 4.5. Подтипы
- 4.6. Производные типы
- 4.7. Выражения
- 4.8. Операторы присваивания
- 4.9. Упражнения
- Глава 5
- 5.1. Записи
- 5.2. Массивы
- 5.3. Массивы и контроль соответствия типов
- Подтипы массивов в языке Ada
- 5.5. Строковый тип
- 5.6. Многомерные массивы
- 5.7. Реализация массивов
- 5.8. Спецификация представления
- 5.9. Упражнения
- Глава 6
- 6.1. Операторы switch и case
- 6.2. Условные операторы
- 6.3. Операторы цикла
- 6.4. Цикл for
- 6.5. «Часовые»
- 6.6. Инварианты
- 6.7. Операторы goto
- 6.8. Упражнения
- Глава 7
- 7.1. Подпрограммы: процедуры и функции
- 7.2. Параметры
- 7.3. Передача параметров подпрограмме
- 7.4. Блочная структура
- 7.5. Рекурсия
- 7.6. Стековая архитектура
- 7.7. Еще о стековой архитектуре
- 7.8. Реализация на процессоре Intel 8086
- 7.9. Упражнения
- Глава 8
- 8.1 . Указательные типы
- 8.2. Структуры данных
- 8.3. Распределение памяти
- 8.4. Алгоритмы распределения динамической памяти
- 8.5. Упражнения
- Глава 9
- 9.1. Представление вещественных чисел
- 9.2. Языковая поддержка вещественных чисел
- 9.3. Три смертных греха
- Вещественные типы в языке Ada
- 9.5. Упражнения
- Глава 10
- 10.1. Преобразование типов
- 10.2. Перегрузка
- 10.3. Родовые (настраиваемые) сегменты
- 10.4. Вариантные записи
- 10.5. Динамическая диспетчеризация
- 10.6. Упражнения
- Глава 11
- 11.1. Требования обработки исключительных ситуаций
- 11.2. Исключения в pl/I
- 11.3. Исключения в Ada
- 11.5. Обработка ошибок в языке Eiffei
- 11.6. Упражнения
- Глава 12
- 12.1. Что такое параллелизм?
- 12.2. Общая память
- 12.3. Проблема взаимных исключений
- 12.4. Мониторы и защищенные переменные
- 12.5. Передача сообщений
- 12.6. Язык параллельного программирования оссаm
- 12.7. Рандеву в языке Ada
- 12.9. Упражнения
- Глава 13
- 13.1. Раздельная компиляция
- 13.2. Почему необходимы модули?
- 13.3. Пакеты в языке Ada
- 13.4. Абстрактные типы данных в языке Ada
- 13.6. Упражнения
- Глава 14
- 14.1. Объектно-ориентированное проектирование
- В каждом объекте должно скрываться одно важное проектное решение.
- 14.3. Наследование
- 14.5. Объектно-ориентированное программирование на языке Ada 95
- Динамический полиморфизм в языке Ada 95 имеет место, когда фактический параметр относится к cw-типу, а формальный параметр относится к конкретному типу.
- 14.6. Упражнения
- Глава 15
- 1. Структурированные классы.
- 15.1. Структурированные классы
- 5.2. Доступ к приватным компонентам
- 15.3. Данные класса
- 15.4. Язык программирования Eiffel
- Если свойство унаследовано от класса предка более чем одним путем, оно используется совместно; в противном случае свойства реплицируются.
- 15.5. Проектные соображения
- 15.6. Методы динамического полиморфизма
- 15.7. Упражнения
- 5Непроцедурные
- Глава 16
- 16.1. Почему именно функциональное программирование?
- 16.2. Функции
- 16.3. Составные типы
- 16.4. Функции более высокого порядка
- 16.5. Ленивые и жадные вычисления
- 16.6. Исключения
- 16.7. Среда
- 16.8. Упражнения
- Глава 17
- 17.2. Унификация
- 17.4. Более сложные понятия логического программирования
- 17.5. Упражнения
- Глава 18
- 18.1. Модель Java
- 18.2. Язык Java
- 18.3. Семантика ссылки
- 18.4. Полиморфные структуры данных
- 18.5. Инкапсуляция
- 18.6. Параллелизм
- 18.7. Библиотеки Java
- 8.8. Упражнения