11.1. Требования обработки исключительных ситуаций
Ошибка во время выполнения программы называется исключительной ситуацией или просто исключением (exception). Когда программы исполнялись не интерактивно (offline), соответствующая реакция на исключительную ситуацию состояла в том, чтобы просто напечатать сообщение об ошибке и завершить выполнение программы. Однако реакция на исключение в интерактивной среде не может быть ограничена сообщением, а должна также включать восстановление, например возврат к той точке, с которой пользователь может повторить вычисление или, по крайней мере, выбрать другой вариант. Программное обеспечение, которое используется в таких встроенных системах, как системы управления летательными аппаратами, должно выполнять восстановление при ошибках без вмешательства человека. Обработка исключений до недавнего времени, как правило, не поддерживалась в языках программирования; использовались только средства операционной системы. В этом разделе будут описаны некоторые механизмы обработки исключений, которые существуют в современных языках программирования.
Восстановление при ошибках не дается даром. Всегда есть затраты на дополнительные структуры данных и алгоритмы, необходимые для идентификации и обработки исключений. Кроме того, часто господствует точка зрения, что код обработки исключений сам является компонентом программы и может содержать ошибки, вызывающие более серьезные проблемы, чем первоначальное исключение! К тому же чрезвычайно трудно идентифицировать ситуации, приводящие к ошибке, и тестировать код обработки исключений, потому что сложно, а иногда и невозможно, создать ситуации, приводящие к ошибке.
Какие свойства делают средства обработки исключений хорошими?
• В случае отсутствия исключения издержки должны быть очень небольшими.
• Обработка исключения должна быть легкой в использовании и безопасной.
Первое требование важнее, чем это может показаться. Поскольку мы предполагаем, что исключительные ситуации, как правило, не возникают, издержки для прикладной программы должны быть минимальны. При наступлении исключительной ситуации издержки на ее обработку обычно не считаются существенными. Суть второго требования в том, что, поскольку исключения происходят нечасто, программирование реакции на них не должно требовать больших усилий; само собой разумеется, что обработчик исключения не должен использовать конструкции, которые могут привести к ошибке.
Одно предупреждение для программиста: обработчик исключений не является заменой условного оператора. Если ситуация может возникать, это не является ошибкой и должно быть явно запрограммировано. Например, вероятность того, что такие структуры данных, как список или дерево, окажутся пустыми, весьма велика, и эту ситуацию необходимо явно проверять, используя условный оператор:
Ada |
С другой стороны, переполнение стека или потеря значимости в операциях с плавающей точкой встречается очень редко и почти наверняка указывает на ошибку в вычислениях.
В качестве элементарной обработки исключений в некоторых языках пользователю дана возможность определять блок кода, который будет выполнен перед завершением программы. Это полезно для наведения порядка (закрытия файлов и т.д.) перед выходом из программы. В языке С средство setjmp/longjmp позволяет пользователю задать дополнительные точки внутри программы, в которые обработчик исключений может возвращаться. Этого типа обработки исключений достаточно, чтобы гарантировать, что программа «изящно» завершится или перезапустится, но он недостаточно гибок для детализированной обработки исключений.
Обратите внимание, что, согласно нашему определению исключения как непредвиденной ошибки на этапе выполнения, в языке С «исключений» меньше, чем в таком языке, как Ada. Во-первых, такие ошибки, как выход за границы массива, не определены в языке С; они просто являются ошибками программиста, которые не могут быть «обработаны». Во-вторых, поскольку в С нет гибкого средства обработки исключений, каждая возможность языка, которая запрашивается через подпрограмму, возвращает код, указывающий, был запрос успешным или нет. Таким образом, в языке Ada распределение памяти с помощью new может вызвать исключительную ситуацию, если нет достаточного объема памяти, тогда как в С malloc возвращает код, который должен быть проверен явно. Выводы для стиля программирования следующие: в Ada можно использовать new обычным порядком, а обработку исключений проектировать независимо, в то время как в С полезно написать подпрограм-му-оболочку для malloc так, чтобы реакцию на исключительные ситуации можно было разработать и запрограммировать централизованно, вместо того чтобы разрешать каждому члену группы тестировать (или забывать тестировать) нехватку памяти:
void* get_memory(int n)
C |
void* p = malloc(n);
if (p == 0) /* Выделение памяти потерпело неудачу */
/* Сделайте что-нибудь или корректно
завершите работу */
return р;
}
Yandex.RTB R-A-252273-3
- Глава 1
- 1.2. Процедурные языки
- 1.3. Языки, ориентированные на данные
- 1.4. Объектно-ориентированные языки
- 1.5. Непроцедурные языки
- 1.6. Стандартизация
- 1.7. Архитектура компьютера
- 1.8. Вычислимость
- 1.9. Упражнения
- Глава 2
- 2.2. Семантика
- 2.3. Данные
- 2.4. Оператор присваивания
- 2.5. Контроль соответствия типов
- 2.7. Подпрограммы
- 2.8. Модули
- 2.9. Упражнения
- Глава 3
- 3.1. Редактор
- 3.2. Компилятор
- 3.3. Библиотекарь
- 3.4. Компоновщик
- 3.5. Загрузчик
- 3.6. Отладчик
- 3.7. Профилировщик
- 3.8. Средства тестирования
- 3.9. Средства конфигурирования
- 3.10. Интерпретаторы
- 3.11. Упражнения
- Глава 4
- 4.1. Целочисленные типы
- I: Integer; -- Целое со знаком в языке Ada
- 4.2. Типы перечисления
- 4.3. Символьный тип
- 4.4. Булев тип
- 4.5. Подтипы
- 4.6. Производные типы
- 4.7. Выражения
- 4.8. Операторы присваивания
- 4.9. Упражнения
- Глава 5
- 5.1. Записи
- 5.2. Массивы
- 5.3. Массивы и контроль соответствия типов
- Подтипы массивов в языке Ada
- 5.5. Строковый тип
- 5.6. Многомерные массивы
- 5.7. Реализация массивов
- 5.8. Спецификация представления
- 5.9. Упражнения
- Глава 6
- 6.1. Операторы switch и case
- 6.2. Условные операторы
- 6.3. Операторы цикла
- 6.4. Цикл for
- 6.5. «Часовые»
- 6.6. Инварианты
- 6.7. Операторы goto
- 6.8. Упражнения
- Глава 7
- 7.1. Подпрограммы: процедуры и функции
- 7.2. Параметры
- 7.3. Передача параметров подпрограмме
- 7.4. Блочная структура
- 7.5. Рекурсия
- 7.6. Стековая архитектура
- 7.7. Еще о стековой архитектуре
- 7.8. Реализация на процессоре Intel 8086
- 7.9. Упражнения
- Глава 8
- 8.1 . Указательные типы
- 8.2. Структуры данных
- 8.3. Распределение памяти
- 8.4. Алгоритмы распределения динамической памяти
- 8.5. Упражнения
- Глава 9
- 9.1. Представление вещественных чисел
- 9.2. Языковая поддержка вещественных чисел
- 9.3. Три смертных греха
- Вещественные типы в языке Ada
- 9.5. Упражнения
- Глава 10
- 10.1. Преобразование типов
- 10.2. Перегрузка
- 10.3. Родовые (настраиваемые) сегменты
- 10.4. Вариантные записи
- 10.5. Динамическая диспетчеризация
- 10.6. Упражнения
- Глава 11
- 11.1. Требования обработки исключительных ситуаций
- 11.2. Исключения в pl/I
- 11.3. Исключения в Ada
- 11.5. Обработка ошибок в языке Eiffei
- 11.6. Упражнения
- Глава 12
- 12.1. Что такое параллелизм?
- 12.2. Общая память
- 12.3. Проблема взаимных исключений
- 12.4. Мониторы и защищенные переменные
- 12.5. Передача сообщений
- 12.6. Язык параллельного программирования оссаm
- 12.7. Рандеву в языке Ada
- 12.9. Упражнения
- Глава 13
- 13.1. Раздельная компиляция
- 13.2. Почему необходимы модули?
- 13.3. Пакеты в языке Ada
- 13.4. Абстрактные типы данных в языке Ada
- 13.6. Упражнения
- Глава 14
- 14.1. Объектно-ориентированное проектирование
- В каждом объекте должно скрываться одно важное проектное решение.
- 14.3. Наследование
- 14.5. Объектно-ориентированное программирование на языке Ada 95
- Динамический полиморфизм в языке Ada 95 имеет место, когда фактический параметр относится к cw-типу, а формальный параметр относится к конкретному типу.
- 14.6. Упражнения
- Глава 15
- 1. Структурированные классы.
- 15.1. Структурированные классы
- 5.2. Доступ к приватным компонентам
- 15.3. Данные класса
- 15.4. Язык программирования Eiffel
- Если свойство унаследовано от класса предка более чем одним путем, оно используется совместно; в противном случае свойства реплицируются.
- 15.5. Проектные соображения
- 15.6. Методы динамического полиморфизма
- 15.7. Упражнения
- 5Непроцедурные
- Глава 16
- 16.1. Почему именно функциональное программирование?
- 16.2. Функции
- 16.3. Составные типы
- 16.4. Функции более высокого порядка
- 16.5. Ленивые и жадные вычисления
- 16.6. Исключения
- 16.7. Среда
- 16.8. Упражнения
- Глава 17
- 17.2. Унификация
- 17.4. Более сложные понятия логического программирования
- 17.5. Упражнения
- Глава 18
- 18.1. Модель Java
- 18.2. Язык Java
- 18.3. Семантика ссылки
- 18.4. Полиморфные структуры данных
- 18.5. Инкапсуляция
- 18.6. Параллелизм
- 18.7. Библиотеки Java
- 8.8. Упражнения