6.2. Условные операторы
Условный оператор — это частный случай case- или switch-оператора, в котором выражение имеет булев тип. Так как булевы типы имеют только два допустимых значения, условный оператор делает выбор между двумя возможными путями. Условные операторы — это, вероятно, наиболее часто используемые управляющие структуры, поскольку часто применяемые операции отношения возвращают значения булева типа:
C |
statement_1;
else
statement_2;
Как мы обсуждали в разделе 4.4, в языке С нет булева типа. Вместо этого применяются целочисленные значения с условием, что ноль это «ложь» (False), a не ноль — «истина» (Тruе).
Распространенная ошибка состоит в использовании условного оператора для создания булева значения:
Ada |
Result = True;
else
Result = False;
end if;
вместо простого оператора присваивания:
Ada |
Result := X > Y;
Запомните, что значения и переменные булева типа являются «полноправными» объектами: в языке С они просто целые, а в Ada они имеют свой тип, но никак не отличаются от любого другого типа перечисления. Тот факт, что булевы типы имеют специальный статус в условных операторах, не накладывает на них никаких ограничений.
Вложенные if-операторы
Альтернативы в if-операторе сами являются операторами; в частности, они могут быть и if-операторами:
if(x1>y1)
if (x2 > у2)
C |
else
statement_2;
else
if (хЗ > y3)
statemen_3;
else
statement_4;
Желательно не делать слишком глубоких вложений управляющих структур (особенно if-операторов) — максимум три или четыре уровня. Причина в том, что иначе становится трудно проследить логику различных путей. Кроме того, структурирование исходного текста с помощью отступов — всего лишь ориентир: если вы пропустите else, синтаксически оператор может все еще оставаться правильным, хотя работать он будет неправильно.
Другая возможная проблема — «повисший» else:
if (x1 > у1)
C |
statement_1;
else
statement_2;
Как показывают отступы, определение языка связывает else с наиболее глубоко вложенным if-оператором. Если вы хотите связать его с внешним if-оператором, нужно использовать скобки:
if(x1>y1){
if (x2 > у2)
statement_1; }
else
statement_2;
Вложенные if-операторы могут определять полное двоичное дерево выборов (рис. 6.2а) или любое произвольное поддерево. Во многих случаях тем не менее необходимо выбрать одну из последовательностей выходов (рис. 6.26).
Если выбор делается на основе выражения, можно воспользоваться switch-оператором. Однако, если выбор делается на основе последовательности выражений отношения, понадобится последовательность вложенных if-onepa-торов. В этом случае принято отступов не делать:
C |
…
} else if (x > z) {
} else if(y < z) {
} else {
...
}
Явный end if
Синтаксис if-оператора в языке С (и Pascal) требует, чтобы каждый вариант выбора был одиночным оператором. Если вариант состоит из нескольких операторов, они должны быть объединены в отдельный составной (compound) оператор с помощью скобок ({,} в языке С и begin, end в Pascal). Проблема такого синтаксиса состоит в том, что если закрывающая скобка пропущена, то компиляция будет продолжена без извещения об ошибке в том месте, где она сделана. В лучшем случае отсутствие скобки будет отмечено в конце компиляции; а в худшем — количество скобок сбалансируется пропуском какой-либо открывающей скобки и ошибка станет скрытой ошибкой этапа выполнения.
Эту проблему можно облегчить, явно завершая if-оператор. Пропуск закрывающей скобки будет отмечен сразу же, как только другая конструкция (цикл или процедура) окажется завершенной другой скобкой. Синтаксис if-оператора языка Ada таков:
if expression then
statement_list_1;
Ada |
statement_list_2;
end if;
Недостаток этой конструкции в том, что в случае последовательности условий (рис. 6.26) получается запутанная последовательность из end if. Чтобы этого избежать, используется специальная конструкция elsif, которая представляет другое условие и оператор, но не другой if-оператор, так что не требуется никакого дополнительного завершения:
if x > у then
….
Ada |
….
elsif у > z then
…
else
…
end if;
Реализация
Реализация if-оператора проста:
Обратите внимание, что вариант False немного эффективнее, чем вариант True, так как последний выполняет лишнюю команду перехода. На первый взгляд может показаться, что условие вида:
-
C
if (!expression)
потребует дополнительную команду для отрицания значения. Однако компиляторы достаточно интеллектуальны для того, чтобы заменить изначальную команду jump_false на jump_true.
Укороченное и полное вычисления
Предположим, что в условном операторе не простое выражение отношения, а составное:
Ada |
if (х > у) and (у > z) and (z < 57) then...
Есть два способа реализации этого оператора. Первый, называемый полным вычислением, вычисляет каждый из компонентов, затем берет булево произведение компонентов и делает переход согласно полученному результату. Вторая реализация, называемая укороченным вычислением (short-circuit)*, вычисляет компоненты один за другим: как только попадется компонент со значением False, делается переход к False-варианту, так как все выражение, очевидно, имеет значение False. Аналогичная ситуация происходит, если составное выражение является or-выражением: если какой-либо компонент имеет значение True, то, очевидно, значение всего выражения будет True.
Выбор между двумя реализациями обычно может быть предоставлен компилятору. В целом укороченное вычисление требует выполнения меньшего числа команд. Однако эти команды включают много переходов, и, возможно, на компьютере с большим кэшем команд (см. раздел 1.7) эффективнее вычислить все компоненты, а переход делать только после полного вычисления.
В языке Pascal оговорено полное вычисление, потому что первоначально он предназначался для компьютера с большим кэшем. Другие языки имеют два набора операций: один для полного вычисления булевых значений и другой — для укороченного. Например, в Ada and используется для полностью вычисляемых булевых операций на булевых и модульных типах, в то время как and then определяет укороченное вычисление:
Ada |
Точно так же or else — эквивалент укороченного вычисления для or.
Язык С содержит три логических оператора: «!» (не), « &&» (и), и «||» (или). Поскольку в С нет настоящего типа Boolean, эти операторы работают с целочисленными операндами и результат определяется в соответствии с интерпретацией, описанной в разделе 4.4. Например, а && b равно единице, если оба операнда не нулевые. Как «&&», так и «||» используют укороченное вычисление. Убедитесь, что вы не спутали эти операции с поразрядными операциями (раздел 5.8).
Относительно стиля программирования можно сказать, что в языке Ada программисты должны выбрать один стиль (либо полное вычисление, либо укороченное) для всей программы, используя другой стиль только в крайнем случае; в языке С вычисления всегда укороченные.
Укороченность вычисления существенна тогда, когда сама возможность вычислить отношение в составном выражении зависит от предыдущего отношения:
Ada |
if (а /= 0) and then (b/a > 25) then .. .
Такая ситуация часто встречается при использовании указателей (гл. 8):
Ada |
Yandex.RTB R-A-252273-3
- Глава 1
- 1.2. Процедурные языки
- 1.3. Языки, ориентированные на данные
- 1.4. Объектно-ориентированные языки
- 1.5. Непроцедурные языки
- 1.6. Стандартизация
- 1.7. Архитектура компьютера
- 1.8. Вычислимость
- 1.9. Упражнения
- Глава 2
- 2.2. Семантика
- 2.3. Данные
- 2.4. Оператор присваивания
- 2.5. Контроль соответствия типов
- 2.7. Подпрограммы
- 2.8. Модули
- 2.9. Упражнения
- Глава 3
- 3.1. Редактор
- 3.2. Компилятор
- 3.3. Библиотекарь
- 3.4. Компоновщик
- 3.5. Загрузчик
- 3.6. Отладчик
- 3.7. Профилировщик
- 3.8. Средства тестирования
- 3.9. Средства конфигурирования
- 3.10. Интерпретаторы
- 3.11. Упражнения
- Глава 4
- 4.1. Целочисленные типы
- I: Integer; -- Целое со знаком в языке Ada
- 4.2. Типы перечисления
- 4.3. Символьный тип
- 4.4. Булев тип
- 4.5. Подтипы
- 4.6. Производные типы
- 4.7. Выражения
- 4.8. Операторы присваивания
- 4.9. Упражнения
- Глава 5
- 5.1. Записи
- 5.2. Массивы
- 5.3. Массивы и контроль соответствия типов
- Подтипы массивов в языке Ada
- 5.5. Строковый тип
- 5.6. Многомерные массивы
- 5.7. Реализация массивов
- 5.8. Спецификация представления
- 5.9. Упражнения
- Глава 6
- 6.1. Операторы switch и case
- 6.2. Условные операторы
- 6.3. Операторы цикла
- 6.4. Цикл for
- 6.5. «Часовые»
- 6.6. Инварианты
- 6.7. Операторы goto
- 6.8. Упражнения
- Глава 7
- 7.1. Подпрограммы: процедуры и функции
- 7.2. Параметры
- 7.3. Передача параметров подпрограмме
- 7.4. Блочная структура
- 7.5. Рекурсия
- 7.6. Стековая архитектура
- 7.7. Еще о стековой архитектуре
- 7.8. Реализация на процессоре Intel 8086
- 7.9. Упражнения
- Глава 8
- 8.1 . Указательные типы
- 8.2. Структуры данных
- 8.3. Распределение памяти
- 8.4. Алгоритмы распределения динамической памяти
- 8.5. Упражнения
- Глава 9
- 9.1. Представление вещественных чисел
- 9.2. Языковая поддержка вещественных чисел
- 9.3. Три смертных греха
- Вещественные типы в языке Ada
- 9.5. Упражнения
- Глава 10
- 10.1. Преобразование типов
- 10.2. Перегрузка
- 10.3. Родовые (настраиваемые) сегменты
- 10.4. Вариантные записи
- 10.5. Динамическая диспетчеризация
- 10.6. Упражнения
- Глава 11
- 11.1. Требования обработки исключительных ситуаций
- 11.2. Исключения в pl/I
- 11.3. Исключения в Ada
- 11.5. Обработка ошибок в языке Eiffei
- 11.6. Упражнения
- Глава 12
- 12.1. Что такое параллелизм?
- 12.2. Общая память
- 12.3. Проблема взаимных исключений
- 12.4. Мониторы и защищенные переменные
- 12.5. Передача сообщений
- 12.6. Язык параллельного программирования оссаm
- 12.7. Рандеву в языке Ada
- 12.9. Упражнения
- Глава 13
- 13.1. Раздельная компиляция
- 13.2. Почему необходимы модули?
- 13.3. Пакеты в языке Ada
- 13.4. Абстрактные типы данных в языке Ada
- 13.6. Упражнения
- Глава 14
- 14.1. Объектно-ориентированное проектирование
- В каждом объекте должно скрываться одно важное проектное решение.
- 14.3. Наследование
- 14.5. Объектно-ориентированное программирование на языке Ada 95
- Динамический полиморфизм в языке Ada 95 имеет место, когда фактический параметр относится к cw-типу, а формальный параметр относится к конкретному типу.
- 14.6. Упражнения
- Глава 15
- 1. Структурированные классы.
- 15.1. Структурированные классы
- 5.2. Доступ к приватным компонентам
- 15.3. Данные класса
- 15.4. Язык программирования Eiffel
- Если свойство унаследовано от класса предка более чем одним путем, оно используется совместно; в противном случае свойства реплицируются.
- 15.5. Проектные соображения
- 15.6. Методы динамического полиморфизма
- 15.7. Упражнения
- 5Непроцедурные
- Глава 16
- 16.1. Почему именно функциональное программирование?
- 16.2. Функции
- 16.3. Составные типы
- 16.4. Функции более высокого порядка
- 16.5. Ленивые и жадные вычисления
- 16.6. Исключения
- 16.7. Среда
- 16.8. Упражнения
- Глава 17
- 17.2. Унификация
- 17.4. Более сложные понятия логического программирования
- 17.5. Упражнения
- Глава 18
- 18.1. Модель Java
- 18.2. Язык Java
- 18.3. Семантика ссылки
- 18.4. Полиморфные структуры данных
- 18.5. Инкапсуляция
- 18.6. Параллелизм
- 18.7. Библиотеки Java
- 8.8. Упражнения