7.2. Параметры
В предыдущем разделе мы определили подпрограммы как сегменты кода, которые можно неоднократно вызывать. Практически всегда при вызове требуется выполнять код тела подпрограммы для новых данных. Способ повлиять на выполнение тела подпрограммы состоит в том, чтобы «передать» ей необходимые данные. Данные передаются подпрограмме в виде последовательности значений, называемых параметрами. Это понятие взято из математики, где для функции задается последовательность аргументов: sin (2piК). Есть два понятия, которые следует четко различать:
• Формальный параметр — это объявление, которое находится в объявлении подпрограммы. Вычисление в теле подпрограммы пишется в.терми-нах формальных параметров.
• Фактический параметр — это значение, которое вызывающая программа передает подпрограмме.
В следующем примере:
int i,,j;
char а;
void p(int a, char b)
C |
i = a + (int) b;
}
P(i,a);
P(i+j, 'x');
формальными параметрами подпрограммы р являются а и b, в то время как фактические параметры при первом вызове — это i и а, а при втором вызове — i + j и 'х'.
На этом примере можно отметить несколько важных моментов. Во-первых, так как фактические параметры являются значениями, то они могут быть константами или выражениями, а не только переменными. Даже когда переменная используется как параметр, на самом деле подразумевается «текущее значение, хранящееся в переменной». Во-вторых, пространство имен у разных подпрограмм разное. Тот факт, что первый формальный параметр называется а, не имеет отношения к остальной части программы, и этот параметр может быть переименован, при условии, конечно, что будут переименованы все вхождения формального параметра в теле подпрограммы. Переменная а, объявленная вне подпрограммы, полностью независима от переменной с таким же именем, объявленной внутри подпрограммы. В разделе 7.7 мы более подробно рассмотрим связь между переменными, объявленными в разных подпрограммах.
Установление соответствия параметров
Обычно фактические параметры при вызове подпрограммы только перечисляются, а соответствие их формальным параметрам определяется по позиции параметра:
Ada |
procedure Proc(First: Integer; Second: Character);
Proc(24, 'X');
Однако в языке Ada при вызове возможно использовать установление соответствия по имени, когда каждому фактическому параметру предшествует имя формального параметра. Следовать порядку объявления параметров при этом не обязательно:
Ada |
Обычно этот вариант используется вместе с параметрами по умолчанию, причем параметры, которые не написаны явно, получают значения по умолчанию, заданные в объявлении подпрограммы:
Ada |
Proc(Second => 'X');
Соответствие по имени и параметры по умолчанию обычно используются в командных языках операционных систем, где каждая команда может иметь множество параметров и обычно необходимо явно изменить только некоторые из них. Однако этот стиль программирования таит в себе ряд опасностей. Использование параметров по умолчанию может сделать программу трудной для чтения, потому что синтаксически отличающиеся обращения фактически вызывают одну и ту же подпрограмму. Соответствие по имени является проблематичным, потому что при этом зависимость объявления подпрограммы и вызовов оказывается более сильной, чем это обычно требуется. Если при вызовах библиотечных подпрограмм вы пользуетесь только позиционными параметрами, то вы могли бы купить библиотеку у конкурирующей фирмы и просто перекомпилировать или перекомпоновать программу:
Ada |
X:=Proc_1 (Y) + Proc_2(Z);
Однако если вы используете именованные параметры, то, возможно, вам придется сильно изменить свою программу, чтобы установить соответствие новым именам параметров:
Ada |
Yandex.RTB R-A-252273-3
- Глава 1
- 1.2. Процедурные языки
- 1.3. Языки, ориентированные на данные
- 1.4. Объектно-ориентированные языки
- 1.5. Непроцедурные языки
- 1.6. Стандартизация
- 1.7. Архитектура компьютера
- 1.8. Вычислимость
- 1.9. Упражнения
- Глава 2
- 2.2. Семантика
- 2.3. Данные
- 2.4. Оператор присваивания
- 2.5. Контроль соответствия типов
- 2.7. Подпрограммы
- 2.8. Модули
- 2.9. Упражнения
- Глава 3
- 3.1. Редактор
- 3.2. Компилятор
- 3.3. Библиотекарь
- 3.4. Компоновщик
- 3.5. Загрузчик
- 3.6. Отладчик
- 3.7. Профилировщик
- 3.8. Средства тестирования
- 3.9. Средства конфигурирования
- 3.10. Интерпретаторы
- 3.11. Упражнения
- Глава 4
- 4.1. Целочисленные типы
- I: Integer; -- Целое со знаком в языке Ada
- 4.2. Типы перечисления
- 4.3. Символьный тип
- 4.4. Булев тип
- 4.5. Подтипы
- 4.6. Производные типы
- 4.7. Выражения
- 4.8. Операторы присваивания
- 4.9. Упражнения
- Глава 5
- 5.1. Записи
- 5.2. Массивы
- 5.3. Массивы и контроль соответствия типов
- Подтипы массивов в языке Ada
- 5.5. Строковый тип
- 5.6. Многомерные массивы
- 5.7. Реализация массивов
- 5.8. Спецификация представления
- 5.9. Упражнения
- Глава 6
- 6.1. Операторы switch и case
- 6.2. Условные операторы
- 6.3. Операторы цикла
- 6.4. Цикл for
- 6.5. «Часовые»
- 6.6. Инварианты
- 6.7. Операторы goto
- 6.8. Упражнения
- Глава 7
- 7.1. Подпрограммы: процедуры и функции
- 7.2. Параметры
- 7.3. Передача параметров подпрограмме
- 7.4. Блочная структура
- 7.5. Рекурсия
- 7.6. Стековая архитектура
- 7.7. Еще о стековой архитектуре
- 7.8. Реализация на процессоре Intel 8086
- 7.9. Упражнения
- Глава 8
- 8.1 . Указательные типы
- 8.2. Структуры данных
- 8.3. Распределение памяти
- 8.4. Алгоритмы распределения динамической памяти
- 8.5. Упражнения
- Глава 9
- 9.1. Представление вещественных чисел
- 9.2. Языковая поддержка вещественных чисел
- 9.3. Три смертных греха
- Вещественные типы в языке Ada
- 9.5. Упражнения
- Глава 10
- 10.1. Преобразование типов
- 10.2. Перегрузка
- 10.3. Родовые (настраиваемые) сегменты
- 10.4. Вариантные записи
- 10.5. Динамическая диспетчеризация
- 10.6. Упражнения
- Глава 11
- 11.1. Требования обработки исключительных ситуаций
- 11.2. Исключения в pl/I
- 11.3. Исключения в Ada
- 11.5. Обработка ошибок в языке Eiffei
- 11.6. Упражнения
- Глава 12
- 12.1. Что такое параллелизм?
- 12.2. Общая память
- 12.3. Проблема взаимных исключений
- 12.4. Мониторы и защищенные переменные
- 12.5. Передача сообщений
- 12.6. Язык параллельного программирования оссаm
- 12.7. Рандеву в языке Ada
- 12.9. Упражнения
- Глава 13
- 13.1. Раздельная компиляция
- 13.2. Почему необходимы модули?
- 13.3. Пакеты в языке Ada
- 13.4. Абстрактные типы данных в языке Ada
- 13.6. Упражнения
- Глава 14
- 14.1. Объектно-ориентированное проектирование
- В каждом объекте должно скрываться одно важное проектное решение.
- 14.3. Наследование
- 14.5. Объектно-ориентированное программирование на языке Ada 95
- Динамический полиморфизм в языке Ada 95 имеет место, когда фактический параметр относится к cw-типу, а формальный параметр относится к конкретному типу.
- 14.6. Упражнения
- Глава 15
- 1. Структурированные классы.
- 15.1. Структурированные классы
- 5.2. Доступ к приватным компонентам
- 15.3. Данные класса
- 15.4. Язык программирования Eiffel
- Если свойство унаследовано от класса предка более чем одним путем, оно используется совместно; в противном случае свойства реплицируются.
- 15.5. Проектные соображения
- 15.6. Методы динамического полиморфизма
- 15.7. Упражнения
- 5Непроцедурные
- Глава 16
- 16.1. Почему именно функциональное программирование?
- 16.2. Функции
- 16.3. Составные типы
- 16.4. Функции более высокого порядка
- 16.5. Ленивые и жадные вычисления
- 16.6. Исключения
- 16.7. Среда
- 16.8. Упражнения
- Глава 17
- 17.2. Унификация
- 17.4. Более сложные понятия логического программирования
- 17.5. Упражнения
- Глава 18
- 18.1. Модель Java
- 18.2. Язык Java
- 18.3. Семантика ссылки
- 18.4. Полиморфные структуры данных
- 18.5. Инкапсуляция
- 18.6. Параллелизм
- 18.7. Библиотеки Java
- 8.8. Упражнения