2.5. Контроль соответствия типов
В трехшаговом описании присваивания в результате вычисления выражения получается значение конкретного типа, в то время как вычисление левой части дает только начальный адрес блока памяти. Нет никакой гарантии, что адрес соответствует переменной того же самого типа, что и выражение; фактически, нет даже гарантии, что размеры копируемого значения и переменной совпадают.
Контроль соответствия типов — это проверка того, что тип выражения совместим с типом адресуемой переменной при присваивании. Сюда входит и присваивание фактического параметра формальному при вызове процедуры.
Возможны следующие подходы к контролю соответствия типов:
• Не делать ничего; именно программист отвечает за то, чтобы присваивание имело смысл.
• Неявно преобразовать значение выражения к типу, который требуется в левой части.
• Строгий контроль соответствия типов: отказ от выполнения присваивания, если типы различаются.
Существует очевидный компромисс между гибкостью и надежностью: чем строже контроль соответствия типов, тем надежнее будет программа, но потребуется больше усилий при программировании для определения подходящего набора типов. Кроме того, должна быть обеспечена возможность при необходимости обойти такой контроль. Наоборот, при слабом контроле соответствия типов проще писать программу, но зато труднее находить ошибки и гарантировать надежность программы. Недостаток контроля соответствия типов состоит в том, что его реализация может потребовать дополнительных затрат во время выполнения программы. Неявное преобразование типов может оказаться хуже полного отсутствия контроля, поскольку при этом возникает ложная уверенность, что все в порядке.
Строгий контроль соответствия типов может исключить скрытые ошибки, которые обычно вызываются опечатками или недоразумениями. Это особенно важно в больших программных проектах, разрабатываемых группами программистов; из-за трудностей общения, смены персонала, и т.п. очень сложно объединять такое программное обеспечение без постоянной проверки, которой является строгий контроль соответствия типов. Фактически, строгий контроль соответствия типов пытается превратить ошибки, возникающие во время выполнения программы, в ошибки, выявляемые при компиляции. Ошибки, проявляющиеся только во время выполнения, часто чрезвычайно трудно найти, они опасны для пользователей и дорого обходятся разработчику программного обеспечения в смысле отсрочки сдачи программы и испорченной репутации. Цена ошибки компиляции незначительна: вам, вероятно, даже не требуется сообщать своему начальнику, что во время компиляции произошла ошибка.
2.6. Управляющие операторы
Операторы присваивания обычно выполняются в той последовательности, в какой они записаны. Управляющие операторы используются для изменения порядка выполнения. Программы на языке ассемблера допускают произвольные переходы по любым адресам. Язык программирования по аналогии может включать оператор goto, который осуществляет переход по метке на произвольный оператор. Программы, использующие произвольные переходы, трудно читать, а следовательно, изменять и поддерживать.
Структурное программирование — это название, данное стилю программирования, который допускает использование только тех управляющих операторов, которые обеспечивают хорошо структурированные программы, легкие для чтения и понимания. Есть два класса хорошо структурированных управляющих операторов.
• Операторы выбора, которые выбирают одну из двух или нескольких альтернативных последовательностей выполнения: условные операторы (if) и переключатели (case или switch).
• Операторы цикла, в которых повторяется выполнение последовательности операторов: операторы for и while.
Хорошее понимание циклов особенно важно по двум причинам: 1) большая часть времени при выполнении будет (очевидно) потрачена на циклы, и 2) многие ошибки связаны с неправильным кодированием начала или конца цикла.
Yandex.RTB R-A-252273-3
- Глава 1
- 1.2. Процедурные языки
- 1.3. Языки, ориентированные на данные
- 1.4. Объектно-ориентированные языки
- 1.5. Непроцедурные языки
- 1.6. Стандартизация
- 1.7. Архитектура компьютера
- 1.8. Вычислимость
- 1.9. Упражнения
- Глава 2
- 2.2. Семантика
- 2.3. Данные
- 2.4. Оператор присваивания
- 2.5. Контроль соответствия типов
- 2.7. Подпрограммы
- 2.8. Модули
- 2.9. Упражнения
- Глава 3
- 3.1. Редактор
- 3.2. Компилятор
- 3.3. Библиотекарь
- 3.4. Компоновщик
- 3.5. Загрузчик
- 3.6. Отладчик
- 3.7. Профилировщик
- 3.8. Средства тестирования
- 3.9. Средства конфигурирования
- 3.10. Интерпретаторы
- 3.11. Упражнения
- Глава 4
- 4.1. Целочисленные типы
- I: Integer; -- Целое со знаком в языке Ada
- 4.2. Типы перечисления
- 4.3. Символьный тип
- 4.4. Булев тип
- 4.5. Подтипы
- 4.6. Производные типы
- 4.7. Выражения
- 4.8. Операторы присваивания
- 4.9. Упражнения
- Глава 5
- 5.1. Записи
- 5.2. Массивы
- 5.3. Массивы и контроль соответствия типов
- Подтипы массивов в языке Ada
- 5.5. Строковый тип
- 5.6. Многомерные массивы
- 5.7. Реализация массивов
- 5.8. Спецификация представления
- 5.9. Упражнения
- Глава 6
- 6.1. Операторы switch и case
- 6.2. Условные операторы
- 6.3. Операторы цикла
- 6.4. Цикл for
- 6.5. «Часовые»
- 6.6. Инварианты
- 6.7. Операторы goto
- 6.8. Упражнения
- Глава 7
- 7.1. Подпрограммы: процедуры и функции
- 7.2. Параметры
- 7.3. Передача параметров подпрограмме
- 7.4. Блочная структура
- 7.5. Рекурсия
- 7.6. Стековая архитектура
- 7.7. Еще о стековой архитектуре
- 7.8. Реализация на процессоре Intel 8086
- 7.9. Упражнения
- Глава 8
- 8.1 . Указательные типы
- 8.2. Структуры данных
- 8.3. Распределение памяти
- 8.4. Алгоритмы распределения динамической памяти
- 8.5. Упражнения
- Глава 9
- 9.1. Представление вещественных чисел
- 9.2. Языковая поддержка вещественных чисел
- 9.3. Три смертных греха
- Вещественные типы в языке Ada
- 9.5. Упражнения
- Глава 10
- 10.1. Преобразование типов
- 10.2. Перегрузка
- 10.3. Родовые (настраиваемые) сегменты
- 10.4. Вариантные записи
- 10.5. Динамическая диспетчеризация
- 10.6. Упражнения
- Глава 11
- 11.1. Требования обработки исключительных ситуаций
- 11.2. Исключения в pl/I
- 11.3. Исключения в Ada
- 11.5. Обработка ошибок в языке Eiffei
- 11.6. Упражнения
- Глава 12
- 12.1. Что такое параллелизм?
- 12.2. Общая память
- 12.3. Проблема взаимных исключений
- 12.4. Мониторы и защищенные переменные
- 12.5. Передача сообщений
- 12.6. Язык параллельного программирования оссаm
- 12.7. Рандеву в языке Ada
- 12.9. Упражнения
- Глава 13
- 13.1. Раздельная компиляция
- 13.2. Почему необходимы модули?
- 13.3. Пакеты в языке Ada
- 13.4. Абстрактные типы данных в языке Ada
- 13.6. Упражнения
- Глава 14
- 14.1. Объектно-ориентированное проектирование
- В каждом объекте должно скрываться одно важное проектное решение.
- 14.3. Наследование
- 14.5. Объектно-ориентированное программирование на языке Ada 95
- Динамический полиморфизм в языке Ada 95 имеет место, когда фактический параметр относится к cw-типу, а формальный параметр относится к конкретному типу.
- 14.6. Упражнения
- Глава 15
- 1. Структурированные классы.
- 15.1. Структурированные классы
- 5.2. Доступ к приватным компонентам
- 15.3. Данные класса
- 15.4. Язык программирования Eiffel
- Если свойство унаследовано от класса предка более чем одним путем, оно используется совместно; в противном случае свойства реплицируются.
- 15.5. Проектные соображения
- 15.6. Методы динамического полиморфизма
- 15.7. Упражнения
- 5Непроцедурные
- Глава 16
- 16.1. Почему именно функциональное программирование?
- 16.2. Функции
- 16.3. Составные типы
- 16.4. Функции более высокого порядка
- 16.5. Ленивые и жадные вычисления
- 16.6. Исключения
- 16.7. Среда
- 16.8. Упражнения
- Глава 17
- 17.2. Унификация
- 17.4. Более сложные понятия логического программирования
- 17.5. Упражнения
- Глава 18
- 18.1. Модель Java
- 18.2. Язык Java
- 18.3. Семантика ссылки
- 18.4. Полиморфные структуры данных
- 18.5. Инкапсуляция
- 18.6. Параллелизм
- 18.7. Библиотеки Java
- 8.8. Упражнения