5.2. Массивы
Массив — это запись, все поля которой имеют один и тот же тип. Кроме того, поля (называемые элементами или компонентами) задаются не именами, а позицией внутри массива. Преимуществом этого типа данных является возможность эффективного доступа к элементу по индексу. Поскольку все элементы имеют один и тот же тип, можно вычислить положение отдельного элемента, умножая индекс на размер элемента. Используя индексы, легко найти отдельный элемент массива, отсортировать или как-то иначе реорганизовать элементы.
Индекс в языке Ada может иметь произвольный дискретный тип, т.е. любой тип, на котором допустим «счет». Таковыми являются целочисленные типы и типы перечисления (включая Character и Boolean):
Ada |
type Temperatures is array(Heat) of Float;
Temp: Temperatures;
Язык С ограничивает индексный тип целыми числами; вы указываете, сколько компонентов вам необходимо:
C |
float temp[Max];
а индексы неявно изменяются от 0 до числа компонентов без единицы, в данном случае от 0 до 3. Язык C++ разрешает использовать любое константное выражение для задания числа элементов массива, что улучшает читаемость программы:
C++ |
const int last = 3;
float temp [last+ 1];
Компоненты массива могут быть любого типа:
C |
typedef struct {... } Car_Data;
Car_Data database [100];
В языке Ada (но не в С) на массивах можно выполнять операции присваивания и проверки на равенство:
type A_Type is array(0..9) of Integer;
Ada |
if A = В then A := C; end if;
Как и в случае с записями, в языке Ada для задания значений массивов, т. е. для агрегатов, предоставляется широкий спектр синтаксических возможностей :
Ada |
А := (0..4 => 1 , 5..9 => 2); -- Половина единиц, половина двоек
А := (others => 0); -- Все нули
В языке С использование агрегатов массивов ограничено заданием начальных значений.
Наиболее важная операция над массивом — индексация, с помощью которой выбирается элемент массива. Индекс, который может быть произвольным выражением индексного типа, пишется после имени массива:
type Char_Array is array(Character range 'a'.. 'z') of Boolean;
Ada |
C: Character:= 'z';
A(C):=A('a')andA('b');
Другой способ интерпретации массивов состоит в том, чтобы рассматривать их как функцию, преобразующую индексный тип в тип элемента. Язык Ada (подобно языку Fortran, но в отличие от языков Pascal и С) поощряет такую точку зрения, используя одинаковый синтаксис для обращений к функции и для индексации массива. То есть, не посмотрев на объявление, нельзя сказать, является А(1) обращением к функции или операцией индексации массива. Преимущество общего синтаксиса в том, что структура данных может быть первоначально реализована как массив, а позже, если понадобится более сложная структура данных, массив может быть заменен функцией без изменения формы обращения. Квадратные скобки вместо круглых в языках Pascal и С применяются в основном для облегчения работы компилятора.
Записи и массивы могут вкладываться друг в друга в произвольном порядке, что позволяет создавать сложные структуры данных. Для доступа к отдельному компоненту такой структуры выбор поля и индексация элемента должны выполняться по очереди до тех пор, пока не будет достигнут компонент:
typedef int A[1 0]; /* Тип массив */
C |
А а; /* Массив внутри записи */
char b;
} Rec;
Rec r[10]; /* Массив записей с массивами типа int внутри */
int i,j,k;
k = r[i+l].a[j-1]; /* Индексация, затем выбор поля,затем индексация */
/* Конечный результат — целочисленное значение */
Обратите внимание, что частичный выбор и индексация в сложной структуре данных дают значение, которое само является массивом или записью:
C |
r[i] Запись, содержащая массив целых чисел
r[i].a Массив целых чисел
r[i].a[j] Целое
и эти значения могут использоваться в операторах присваивания и т.п.
- Глава 1
- 1.2. Процедурные языки
- 1.3. Языки, ориентированные на данные
- 1.4. Объектно-ориентированные языки
- 1.5. Непроцедурные языки
- 1.6. Стандартизация
- 1.7. Архитектура компьютера
- 1.8. Вычислимость
- 1.9. Упражнения
- Глава 2
- 2.2. Семантика
- 2.3. Данные
- 2.4. Оператор присваивания
- 2.5. Контроль соответствия типов
- 2.7. Подпрограммы
- 2.8. Модули
- 2.9. Упражнения
- Глава 3
- 3.1. Редактор
- 3.2. Компилятор
- 3.3. Библиотекарь
- 3.4. Компоновщик
- 3.5. Загрузчик
- 3.6. Отладчик
- 3.7. Профилировщик
- 3.8. Средства тестирования
- 3.9. Средства конфигурирования
- 3.10. Интерпретаторы
- 3.11. Упражнения
- Глава 4
- 4.1. Целочисленные типы
- I: Integer; -- Целое со знаком в языке Ada
- 4.2. Типы перечисления
- 4.3. Символьный тип
- 4.4. Булев тип
- 4.5. Подтипы
- 4.6. Производные типы
- 4.7. Выражения
- 4.8. Операторы присваивания
- 4.9. Упражнения
- Глава 5
- 5.1. Записи
- 5.2. Массивы
- 5.3. Массивы и контроль соответствия типов
- Подтипы массивов в языке Ada
- 5.5. Строковый тип
- 5.6. Многомерные массивы
- 5.7. Реализация массивов
- 5.8. Спецификация представления
- 5.9. Упражнения
- Глава 6
- 6.1. Операторы switch и case
- 6.2. Условные операторы
- 6.3. Операторы цикла
- 6.4. Цикл for
- 6.5. «Часовые»
- 6.6. Инварианты
- 6.7. Операторы goto
- 6.8. Упражнения
- Глава 7
- 7.1. Подпрограммы: процедуры и функции
- 7.2. Параметры
- 7.3. Передача параметров подпрограмме
- 7.4. Блочная структура
- 7.5. Рекурсия
- 7.6. Стековая архитектура
- 7.7. Еще о стековой архитектуре
- 7.8. Реализация на процессоре Intel 8086
- 7.9. Упражнения
- Глава 8
- 8.1 . Указательные типы
- 8.2. Структуры данных
- 8.3. Распределение памяти
- 8.4. Алгоритмы распределения динамической памяти
- 8.5. Упражнения
- Глава 9
- 9.1. Представление вещественных чисел
- 9.2. Языковая поддержка вещественных чисел
- 9.3. Три смертных греха
- Вещественные типы в языке Ada
- 9.5. Упражнения
- Глава 10
- 10.1. Преобразование типов
- 10.2. Перегрузка
- 10.3. Родовые (настраиваемые) сегменты
- 10.4. Вариантные записи
- 10.5. Динамическая диспетчеризация
- 10.6. Упражнения
- Глава 11
- 11.1. Требования обработки исключительных ситуаций
- 11.2. Исключения в pl/I
- 11.3. Исключения в Ada
- 11.5. Обработка ошибок в языке Eiffei
- 11.6. Упражнения
- Глава 12
- 12.1. Что такое параллелизм?
- 12.2. Общая память
- 12.3. Проблема взаимных исключений
- 12.4. Мониторы и защищенные переменные
- 12.5. Передача сообщений
- 12.6. Язык параллельного программирования оссаm
- 12.7. Рандеву в языке Ada
- 12.9. Упражнения
- Глава 13
- 13.1. Раздельная компиляция
- 13.2. Почему необходимы модули?
- 13.3. Пакеты в языке Ada
- 13.4. Абстрактные типы данных в языке Ada
- 13.6. Упражнения
- Глава 14
- 14.1. Объектно-ориентированное проектирование
- В каждом объекте должно скрываться одно важное проектное решение.
- 14.3. Наследование
- 14.5. Объектно-ориентированное программирование на языке Ada 95
- Динамический полиморфизм в языке Ada 95 имеет место, когда фактический параметр относится к cw-типу, а формальный параметр относится к конкретному типу.
- 14.6. Упражнения
- Глава 15
- 1. Структурированные классы.
- 15.1. Структурированные классы
- 5.2. Доступ к приватным компонентам
- 15.3. Данные класса
- 15.4. Язык программирования Eiffel
- Если свойство унаследовано от класса предка более чем одним путем, оно используется совместно; в противном случае свойства реплицируются.
- 15.5. Проектные соображения
- 15.6. Методы динамического полиморфизма
- 15.7. Упражнения
- 5Непроцедурные
- Глава 16
- 16.1. Почему именно функциональное программирование?
- 16.2. Функции
- 16.3. Составные типы
- 16.4. Функции более высокого порядка
- 16.5. Ленивые и жадные вычисления
- 16.6. Исключения
- 16.7. Среда
- 16.8. Упражнения
- Глава 17
- 17.2. Унификация
- 17.4. Более сложные понятия логического программирования
- 17.5. Упражнения
- Глава 18
- 18.1. Модель Java
- 18.2. Язык Java
- 18.3. Семантика ссылки
- 18.4. Полиморфные структуры данных
- 18.5. Инкапсуляция
- 18.6. Параллелизм
- 18.7. Библиотеки Java
- 8.8. Упражнения