6.6. Инварианты
Формальное определение семантики операторов цикла базируется на концепции инварианта: формулы, которая остается истинной после каждого выполнения тела цикла. Рассмотрим предельно упрощенную программу для вы- числения целочисленного деления а на b с тем, чтобы получить результат у:
у = 0;
C |
while (х >- b) { /* Пока b «входит» в х, */
х -= b; /* вычитание b означает, что */
у++; /* результат должен быть увеличен */
}
и рассмотрим формулу:
a = yb +х
где курсивом обозначено значение соответствующей программной переменной. После операторов инициализации она, конечно, будет правильной, поскольку у = 0 и х = а. Кроме того, в конце программы формула определяет, что у есть результат целочисленного деления а/b при условии, что остаток х меньше делителя b.
Не столь очевидно то, что формула остается правильной после каждого выполнения тела цикла. В такой тривиальной программе этот факт легко увидеть с помощью простой арифметики, изменив значения х и у в теле цикла:
(у + \)b + (х-b)=уb+b+х-b=уb+х=а
Таким образом, выполнение тела цикла переводит программу из состояния, которое удовлетворяет инварианту, в другое состояние, которое по-прежнему удовлетворяет инварианту.
Теперь заметим: для того чтобы завершить цикл, булево условие в цикле while должно иметь значение False, то есть вычисление должно быть в таком состоянии, при котором --(х > b), что эквивалентно х < b. Объединив эту формулу с инвариантом, мы показали, что программа действительно выполняет целочисленное деление.
Точнее, если программа завершается, то результат является правильным. Это называется частичной правильностью. Чтобы доказать полную правильность, мы должны также показать, что цикл завершается.
Это делается следующим образом. Так как во время выполнения программы b является константой (и предполагается положительной!), нам нужно показать, что неоднократное уменьшение х на b должно, в конечном счете, привести к состоянию, в котором 0 < х < b. Но 1) поскольку х уменьшается неоднократно, его значение не может бесконечно оставаться больше значения b; 2) из условия завершения цикла и из вычисления в теле цикла следует, что х никогда не станет отрицательным. Эти два факта доказывают, что цикл должен завершиться.
Инварианты цикла в языке Eiffel
Язык Eiffel имеет в себе средства для задания контрольных утверждений вообще (см. раздел 11.5) и инвариантов циклов в частности:
from
у = 0; х = а;
invariant
Eiffel |
variant
х
until
x< b
loop
x :=x-b;
у:=у+1;
end
Конструкция from устанавливает начальные условия, конструкция until задает условие для завершения цикла, а операторы между loop и end образуют тело цикла. Конструкция invariant определяет инвариант цикла, а конструкция variant определяет выражение, которое будет уменьшаться (но останется неотрицательным) с каждой итерацией цикла. Правильность инварианта проверяется после каждого выполнения тела цикла.
Yandex.RTB R-A-252273-3
- Глава 1
- 1.2. Процедурные языки
- 1.3. Языки, ориентированные на данные
- 1.4. Объектно-ориентированные языки
- 1.5. Непроцедурные языки
- 1.6. Стандартизация
- 1.7. Архитектура компьютера
- 1.8. Вычислимость
- 1.9. Упражнения
- Глава 2
- 2.2. Семантика
- 2.3. Данные
- 2.4. Оператор присваивания
- 2.5. Контроль соответствия типов
- 2.7. Подпрограммы
- 2.8. Модули
- 2.9. Упражнения
- Глава 3
- 3.1. Редактор
- 3.2. Компилятор
- 3.3. Библиотекарь
- 3.4. Компоновщик
- 3.5. Загрузчик
- 3.6. Отладчик
- 3.7. Профилировщик
- 3.8. Средства тестирования
- 3.9. Средства конфигурирования
- 3.10. Интерпретаторы
- 3.11. Упражнения
- Глава 4
- 4.1. Целочисленные типы
- I: Integer; -- Целое со знаком в языке Ada
- 4.2. Типы перечисления
- 4.3. Символьный тип
- 4.4. Булев тип
- 4.5. Подтипы
- 4.6. Производные типы
- 4.7. Выражения
- 4.8. Операторы присваивания
- 4.9. Упражнения
- Глава 5
- 5.1. Записи
- 5.2. Массивы
- 5.3. Массивы и контроль соответствия типов
- Подтипы массивов в языке Ada
- 5.5. Строковый тип
- 5.6. Многомерные массивы
- 5.7. Реализация массивов
- 5.8. Спецификация представления
- 5.9. Упражнения
- Глава 6
- 6.1. Операторы switch и case
- 6.2. Условные операторы
- 6.3. Операторы цикла
- 6.4. Цикл for
- 6.5. «Часовые»
- 6.6. Инварианты
- 6.7. Операторы goto
- 6.8. Упражнения
- Глава 7
- 7.1. Подпрограммы: процедуры и функции
- 7.2. Параметры
- 7.3. Передача параметров подпрограмме
- 7.4. Блочная структура
- 7.5. Рекурсия
- 7.6. Стековая архитектура
- 7.7. Еще о стековой архитектуре
- 7.8. Реализация на процессоре Intel 8086
- 7.9. Упражнения
- Глава 8
- 8.1 . Указательные типы
- 8.2. Структуры данных
- 8.3. Распределение памяти
- 8.4. Алгоритмы распределения динамической памяти
- 8.5. Упражнения
- Глава 9
- 9.1. Представление вещественных чисел
- 9.2. Языковая поддержка вещественных чисел
- 9.3. Три смертных греха
- Вещественные типы в языке Ada
- 9.5. Упражнения
- Глава 10
- 10.1. Преобразование типов
- 10.2. Перегрузка
- 10.3. Родовые (настраиваемые) сегменты
- 10.4. Вариантные записи
- 10.5. Динамическая диспетчеризация
- 10.6. Упражнения
- Глава 11
- 11.1. Требования обработки исключительных ситуаций
- 11.2. Исключения в pl/I
- 11.3. Исключения в Ada
- 11.5. Обработка ошибок в языке Eiffei
- 11.6. Упражнения
- Глава 12
- 12.1. Что такое параллелизм?
- 12.2. Общая память
- 12.3. Проблема взаимных исключений
- 12.4. Мониторы и защищенные переменные
- 12.5. Передача сообщений
- 12.6. Язык параллельного программирования оссаm
- 12.7. Рандеву в языке Ada
- 12.9. Упражнения
- Глава 13
- 13.1. Раздельная компиляция
- 13.2. Почему необходимы модули?
- 13.3. Пакеты в языке Ada
- 13.4. Абстрактные типы данных в языке Ada
- 13.6. Упражнения
- Глава 14
- 14.1. Объектно-ориентированное проектирование
- В каждом объекте должно скрываться одно важное проектное решение.
- 14.3. Наследование
- 14.5. Объектно-ориентированное программирование на языке Ada 95
- Динамический полиморфизм в языке Ada 95 имеет место, когда фактический параметр относится к cw-типу, а формальный параметр относится к конкретному типу.
- 14.6. Упражнения
- Глава 15
- 1. Структурированные классы.
- 15.1. Структурированные классы
- 5.2. Доступ к приватным компонентам
- 15.3. Данные класса
- 15.4. Язык программирования Eiffel
- Если свойство унаследовано от класса предка более чем одним путем, оно используется совместно; в противном случае свойства реплицируются.
- 15.5. Проектные соображения
- 15.6. Методы динамического полиморфизма
- 15.7. Упражнения
- 5Непроцедурные
- Глава 16
- 16.1. Почему именно функциональное программирование?
- 16.2. Функции
- 16.3. Составные типы
- 16.4. Функции более высокого порядка
- 16.5. Ленивые и жадные вычисления
- 16.6. Исключения
- 16.7. Среда
- 16.8. Упражнения
- Глава 17
- 17.2. Унификация
- 17.4. Более сложные понятия логического программирования
- 17.5. Упражнения
- Глава 18
- 18.1. Модель Java
- 18.2. Язык Java
- 18.3. Семантика ссылки
- 18.4. Полиморфные структуры данных
- 18.5. Инкапсуляция
- 18.6. Параллелизм
- 18.7. Библиотеки Java
- 8.8. Упражнения