12.1. Что такое параллелизм?
Компьютеры с несколькими центральными процессорами (ЦП) могут выполнять несколько программ или компонентов одной программы параллельно. Вычисление, таким образом, может завершиться за меньшее время счета (количество часов), чем на компьютере с одним ЦП, с учетом затрат дополнительного времени ЦП на синхронизацию и связь. Несколько программ могут также совместно использовать компьютер с одним ЦП, так быстро переключая ЦП с одной программы на другую, что возникает впечатление, будто они выполняются одновременно. Несмотря на то, что переключение ЦП не реализует настоящую параллельность, удобно разрабатывать программное обеспечение для этих систем так, как если бы выполнение программ действительно происходило параллельно. Параллелизм — это термин, используемый для обозначения одновременного выполнения нескольких программ без уточнения, является вычисление параллельным на самом деле или только таким кажется.
Прямой параллелизм знаком большинству программистов в следующих формах:
• Мультипрограммные (multi-programming) операционные системы дают возможность одновременно использовать компьютер нескольким пользователям. Системы разделения времени, реализованные на обычных больших машинах и миникомпьютерах, в течение многих лет были единственным способом сделать доступными вычислительные средства для таких больших коллективов, как университеты.
• Многозадачные (multi-tasking) операционные системы дают возможность одновременно выполнять несколько компонентов одной программы (или программ одного пользователя). С появлением персональных компьютеров мультипрограммные компьютеры стали менее распространенными, но даже одному человеку часто необходим многозадачный режим для одновременного выполнения разных задач, как, например, фоновая печать при диалоговом режиме работы с документом.
• Встроенные системы (embedded systems) на заводах, транспортных системах и в медицинской аппаратуре управляют наборами датчиков и приводов в «реальном масштабе времени». Для этих систем характерно требование, чтобы они выполняли относительно небольшие по объему вычисления через очень короткие промежутки времени: каждый датчик должен быть считан и проинтерпретирован, затем программа должна выбрать соответствующее действие, и, наконец, данные в определенном формате должны быть переданы к приводам. Для реализации встроенных систем используются многозадачные операционные системы, позволяющие координировать десятки обособленных вычислений.
Проектирование и программирование параллельных систем являются чрезвычайно сложным делом, и целые учебники посвящены различным аспектам этой проблемы: архитектуре систем, диспетчеризации задач, аппаратным интерфейсам и т. д. Цель этого раздела состоит в том, чтобы дать краткий обзор языковой поддержки параллелизма, который традиционно обеспечивался функциями операционной системы и аппаратурой.
Параллельная программа (concurent program) состоит из одного или нескольких программных компонентов (процессов), которые могут выполняться параллельно. Параллельные программы сталкиваются с двумя проблемами:
Синхронизация. Даже если процессы выполняются одновременно, иногда один процесс должен будет синхронизировать свое выполнение с другими процессами. Наиболее важная форма синхронизации — взаимное исключение: два процесса не должны обращаться к одному и тому же ресурсу (такому, как диск или общая таблица) одновременно.
Взаимодействие. Процессы не являются полностью независимыми; они должны обмениваться данными. Например, в программе управления полетом процесс, считывающий показания датчика высоты, должен передать результат процессу, который делает расчеты для автопилота.
Yandex.RTB R-A-252273-3
- Глава 1
- 1.2. Процедурные языки
- 1.3. Языки, ориентированные на данные
- 1.4. Объектно-ориентированные языки
- 1.5. Непроцедурные языки
- 1.6. Стандартизация
- 1.7. Архитектура компьютера
- 1.8. Вычислимость
- 1.9. Упражнения
- Глава 2
- 2.2. Семантика
- 2.3. Данные
- 2.4. Оператор присваивания
- 2.5. Контроль соответствия типов
- 2.7. Подпрограммы
- 2.8. Модули
- 2.9. Упражнения
- Глава 3
- 3.1. Редактор
- 3.2. Компилятор
- 3.3. Библиотекарь
- 3.4. Компоновщик
- 3.5. Загрузчик
- 3.6. Отладчик
- 3.7. Профилировщик
- 3.8. Средства тестирования
- 3.9. Средства конфигурирования
- 3.10. Интерпретаторы
- 3.11. Упражнения
- Глава 4
- 4.1. Целочисленные типы
- I: Integer; -- Целое со знаком в языке Ada
- 4.2. Типы перечисления
- 4.3. Символьный тип
- 4.4. Булев тип
- 4.5. Подтипы
- 4.6. Производные типы
- 4.7. Выражения
- 4.8. Операторы присваивания
- 4.9. Упражнения
- Глава 5
- 5.1. Записи
- 5.2. Массивы
- 5.3. Массивы и контроль соответствия типов
- Подтипы массивов в языке Ada
- 5.5. Строковый тип
- 5.6. Многомерные массивы
- 5.7. Реализация массивов
- 5.8. Спецификация представления
- 5.9. Упражнения
- Глава 6
- 6.1. Операторы switch и case
- 6.2. Условные операторы
- 6.3. Операторы цикла
- 6.4. Цикл for
- 6.5. «Часовые»
- 6.6. Инварианты
- 6.7. Операторы goto
- 6.8. Упражнения
- Глава 7
- 7.1. Подпрограммы: процедуры и функции
- 7.2. Параметры
- 7.3. Передача параметров подпрограмме
- 7.4. Блочная структура
- 7.5. Рекурсия
- 7.6. Стековая архитектура
- 7.7. Еще о стековой архитектуре
- 7.8. Реализация на процессоре Intel 8086
- 7.9. Упражнения
- Глава 8
- 8.1 . Указательные типы
- 8.2. Структуры данных
- 8.3. Распределение памяти
- 8.4. Алгоритмы распределения динамической памяти
- 8.5. Упражнения
- Глава 9
- 9.1. Представление вещественных чисел
- 9.2. Языковая поддержка вещественных чисел
- 9.3. Три смертных греха
- Вещественные типы в языке Ada
- 9.5. Упражнения
- Глава 10
- 10.1. Преобразование типов
- 10.2. Перегрузка
- 10.3. Родовые (настраиваемые) сегменты
- 10.4. Вариантные записи
- 10.5. Динамическая диспетчеризация
- 10.6. Упражнения
- Глава 11
- 11.1. Требования обработки исключительных ситуаций
- 11.2. Исключения в pl/I
- 11.3. Исключения в Ada
- 11.5. Обработка ошибок в языке Eiffei
- 11.6. Упражнения
- Глава 12
- 12.1. Что такое параллелизм?
- 12.2. Общая память
- 12.3. Проблема взаимных исключений
- 12.4. Мониторы и защищенные переменные
- 12.5. Передача сообщений
- 12.6. Язык параллельного программирования оссаm
- 12.7. Рандеву в языке Ada
- 12.9. Упражнения
- Глава 13
- 13.1. Раздельная компиляция
- 13.2. Почему необходимы модули?
- 13.3. Пакеты в языке Ada
- 13.4. Абстрактные типы данных в языке Ada
- 13.6. Упражнения
- Глава 14
- 14.1. Объектно-ориентированное проектирование
- В каждом объекте должно скрываться одно важное проектное решение.
- 14.3. Наследование
- 14.5. Объектно-ориентированное программирование на языке Ada 95
- Динамический полиморфизм в языке Ada 95 имеет место, когда фактический параметр относится к cw-типу, а формальный параметр относится к конкретному типу.
- 14.6. Упражнения
- Глава 15
- 1. Структурированные классы.
- 15.1. Структурированные классы
- 5.2. Доступ к приватным компонентам
- 15.3. Данные класса
- 15.4. Язык программирования Eiffel
- Если свойство унаследовано от класса предка более чем одним путем, оно используется совместно; в противном случае свойства реплицируются.
- 15.5. Проектные соображения
- 15.6. Методы динамического полиморфизма
- 15.7. Упражнения
- 5Непроцедурные
- Глава 16
- 16.1. Почему именно функциональное программирование?
- 16.2. Функции
- 16.3. Составные типы
- 16.4. Функции более высокого порядка
- 16.5. Ленивые и жадные вычисления
- 16.6. Исключения
- 16.7. Среда
- 16.8. Упражнения
- Глава 17
- 17.2. Унификация
- 17.4. Более сложные понятия логического программирования
- 17.5. Упражнения
- Глава 18
- 18.1. Модель Java
- 18.2. Язык Java
- 18.3. Семантика ссылки
- 18.4. Полиморфные структуры данных
- 18.5. Инкапсуляция
- 18.6. Параллелизм
- 18.7. Библиотеки Java
- 8.8. Упражнения