6.7. Операторы goto
В первоначальном описании языка Fortran был только один структурированный управляющий оператор: оператор do, аналогичный циклу for. Все остальные передачи управления делались с помощью условных или безусловных переходов на метки, т. е. с помощью операторов, которые называются goto:
if(a.eq.b)goto12
…
goto 5
Fortan |
…
12 …
…
5 …
if (x .gt. y) goto 4
В 1968 г. Э. Дейкстра написал знаменитое письмо, озаглавленное «оператор goto следует считать вредным», с которого началась дискуссия о структурном программировании. Основной аргумент против goto состоит в том, чтс произвольные переходы не структуированы и создают «программу-спагетти», в которой возможные пути выполнения так переплетаются, что ее невозможно понять и протестировать. Аргументом в пользу goto является то что в реальных программах часто требуются более общие управляющие структуры, чем те, которые предлагают структурированные операторы, и чтс принуждение программистов использовать их приводит к искусственному и сложному коду.
Оглядываясь назад, можно сказать, что эти дебаты были чересчур эмоциональны и затянуты, потому что основные принципы совсем просты и не требуют долгого обсуждения. Более того, в современные диалекты языка Fortrar добавлены более совершенные операторы управления с тем, чтобы оператор goto больше не доминировал.
Можно доказать математически, что достаточно if- и while-операторов чтобы записать любую необходимую управляющую структуру. Кроме того эти операторы легко понять и использовать. Различные синтаксические расширения типа циклов for вполне ясны и при правильном использовании не представляют никаких трудностей для понимания или сопровождения программы. Так почему же языки программирования (включая Ada, при разработке которого исходили из соображений надежности) сохраняют goto?
Причина в том, что есть несколько вполне определенных ситуаций, где лучше использовать goto. Во-первых, многие циклы не могут завершаться в точке входа, как того требует цикл while. Попытка превратить все циклы в циклы while может затемнить суть дела. В современных языках гибкости привносимой операторами exit и break, достаточно и оператор goto для этой цели обычно не нужен. Однако goto все еще существует и иногда может быть полезным. Обратите внимание, что как язык С, так и Ada, ограничивают применение goto требованием, чтобы метка находилась в той же самой процедуре.
Вторая ситуация, которую легко запрограммировать с помощью goto, — выход из глубоко вложенного вычисления. Предположим, что глубоко внутри ряда вызовов процедур обнаружена ошибка, что делает неверным все вычисление. В этой ситуации естественно было бы запрограммировать выдачу сообщения об ошибке и завершить или возвратить в исходное состояние все вычисление. Однако для этого требуется сделать возврат из многих процедур, которые должны знать, что произошла ошибка. Проще и понятнее выйти в основную программу с помощью goto.
В языке С нет никаких средств для обработки этой ситуации (не подходит даже goto по причине ограниченности рамками отдельной процедуры), поэтому для обработки серьезных ошибок нужно использовать средства операционной системы. В языках Ada, C++ и Eiffel есть специальные языковые конструкции, так называемые исключения (exseptions), см. гл. 11, которые непосредственно решают эту проблему. Таким образом, операторы goto в большинстве случаев были вытеснены по мере совершенствования языков.
Назначаемые goto-операторы
В языке Fortran есть конструкция, которая называется назначаемым (assigned) оператором goto. Можно определить метку-переменную и присваивать ей значение той или иной конкретной метки. При переходе по метке-переменной фактической целевой точкой перехода является значение этой переменной:
assign 5 to Label
...
Fortan |
5 ...
6 ...
goto Label
Проблема, конечно, в том, что присваивание значения метке-переменной могло быть сделано за миллионы команд до того, как выполняется goto, и программы в таких случаях отлаживать и верифицировать практически невозможно.
Хотя в других языках не существует назначаемого goto, такую конструкцию совсем просто смоделировать, определяя много небольших подпрограмм и манипулируя передачами указателей на эти подпрограммы. Соотносить конкретный вызов с присвоением указателю значения, связывающего его с той или иной подпрограммой, достаточно трудно. Поэтому указатели на подпрограммы следует применять лишь в случаях хорошей структурированности, например в таблицах указателей на функции в интерпретаторах или в механизмах обратного вызова.
Yandex.RTB R-A-252273-3
- Глава 1
- 1.2. Процедурные языки
- 1.3. Языки, ориентированные на данные
- 1.4. Объектно-ориентированные языки
- 1.5. Непроцедурные языки
- 1.6. Стандартизация
- 1.7. Архитектура компьютера
- 1.8. Вычислимость
- 1.9. Упражнения
- Глава 2
- 2.2. Семантика
- 2.3. Данные
- 2.4. Оператор присваивания
- 2.5. Контроль соответствия типов
- 2.7. Подпрограммы
- 2.8. Модули
- 2.9. Упражнения
- Глава 3
- 3.1. Редактор
- 3.2. Компилятор
- 3.3. Библиотекарь
- 3.4. Компоновщик
- 3.5. Загрузчик
- 3.6. Отладчик
- 3.7. Профилировщик
- 3.8. Средства тестирования
- 3.9. Средства конфигурирования
- 3.10. Интерпретаторы
- 3.11. Упражнения
- Глава 4
- 4.1. Целочисленные типы
- I: Integer; -- Целое со знаком в языке Ada
- 4.2. Типы перечисления
- 4.3. Символьный тип
- 4.4. Булев тип
- 4.5. Подтипы
- 4.6. Производные типы
- 4.7. Выражения
- 4.8. Операторы присваивания
- 4.9. Упражнения
- Глава 5
- 5.1. Записи
- 5.2. Массивы
- 5.3. Массивы и контроль соответствия типов
- Подтипы массивов в языке Ada
- 5.5. Строковый тип
- 5.6. Многомерные массивы
- 5.7. Реализация массивов
- 5.8. Спецификация представления
- 5.9. Упражнения
- Глава 6
- 6.1. Операторы switch и case
- 6.2. Условные операторы
- 6.3. Операторы цикла
- 6.4. Цикл for
- 6.5. «Часовые»
- 6.6. Инварианты
- 6.7. Операторы goto
- 6.8. Упражнения
- Глава 7
- 7.1. Подпрограммы: процедуры и функции
- 7.2. Параметры
- 7.3. Передача параметров подпрограмме
- 7.4. Блочная структура
- 7.5. Рекурсия
- 7.6. Стековая архитектура
- 7.7. Еще о стековой архитектуре
- 7.8. Реализация на процессоре Intel 8086
- 7.9. Упражнения
- Глава 8
- 8.1 . Указательные типы
- 8.2. Структуры данных
- 8.3. Распределение памяти
- 8.4. Алгоритмы распределения динамической памяти
- 8.5. Упражнения
- Глава 9
- 9.1. Представление вещественных чисел
- 9.2. Языковая поддержка вещественных чисел
- 9.3. Три смертных греха
- Вещественные типы в языке Ada
- 9.5. Упражнения
- Глава 10
- 10.1. Преобразование типов
- 10.2. Перегрузка
- 10.3. Родовые (настраиваемые) сегменты
- 10.4. Вариантные записи
- 10.5. Динамическая диспетчеризация
- 10.6. Упражнения
- Глава 11
- 11.1. Требования обработки исключительных ситуаций
- 11.2. Исключения в pl/I
- 11.3. Исключения в Ada
- 11.5. Обработка ошибок в языке Eiffei
- 11.6. Упражнения
- Глава 12
- 12.1. Что такое параллелизм?
- 12.2. Общая память
- 12.3. Проблема взаимных исключений
- 12.4. Мониторы и защищенные переменные
- 12.5. Передача сообщений
- 12.6. Язык параллельного программирования оссаm
- 12.7. Рандеву в языке Ada
- 12.9. Упражнения
- Глава 13
- 13.1. Раздельная компиляция
- 13.2. Почему необходимы модули?
- 13.3. Пакеты в языке Ada
- 13.4. Абстрактные типы данных в языке Ada
- 13.6. Упражнения
- Глава 14
- 14.1. Объектно-ориентированное проектирование
- В каждом объекте должно скрываться одно важное проектное решение.
- 14.3. Наследование
- 14.5. Объектно-ориентированное программирование на языке Ada 95
- Динамический полиморфизм в языке Ada 95 имеет место, когда фактический параметр относится к cw-типу, а формальный параметр относится к конкретному типу.
- 14.6. Упражнения
- Глава 15
- 1. Структурированные классы.
- 15.1. Структурированные классы
- 5.2. Доступ к приватным компонентам
- 15.3. Данные класса
- 15.4. Язык программирования Eiffel
- Если свойство унаследовано от класса предка более чем одним путем, оно используется совместно; в противном случае свойства реплицируются.
- 15.5. Проектные соображения
- 15.6. Методы динамического полиморфизма
- 15.7. Упражнения
- 5Непроцедурные
- Глава 16
- 16.1. Почему именно функциональное программирование?
- 16.2. Функции
- 16.3. Составные типы
- 16.4. Функции более высокого порядка
- 16.5. Ленивые и жадные вычисления
- 16.6. Исключения
- 16.7. Среда
- 16.8. Упражнения
- Глава 17
- 17.2. Унификация
- 17.4. Более сложные понятия логического программирования
- 17.5. Упражнения
- Глава 18
- 18.1. Модель Java
- 18.2. Язык Java
- 18.3. Семантика ссылки
- 18.4. Полиморфные структуры данных
- 18.5. Инкапсуляция
- 18.6. Параллелизм
- 18.7. Библиотеки Java
- 8.8. Упражнения