3.10.4 Кратко об истории и характеристиках стандартов mpeg.
MPEG расшифровывается как "Moving Picture Coding Experts Group", дословно - "Группа экспертов по кодированию подвижных изображений". MPEG ведет свою историю с января 1988 года. Точнее, группа MPEG была создана Международной организацией стандартов (International Standards Organization или сокращенно ISO) и Международной электротехнической комиссией (International Electro-Technical Commission или сокращенно IEC). Группа была образована для создания стандартов кодирования подвижных изображений и аудио информации. Начиная с первого собрания в мае 1988 года группа начала расти и выросла до необычайно плотной группы специалистов. Обычно, в собрании MPEG принимают участие около 350 специалистов из более чем 200 компаний. Встречи проводятся около трех раз в году. Большая часть участников MPEG - это индивидуальные специалисты, занятые в тех или иных научных и академических учреждениях. Это из области истории. Теперь о практике. На сегодняшний день MPEG разработаны следующие стандарты и алгоритмы:
1) MPEG-1 (ноябрь 1992) - стандарт кодирования, хранения и декодирования подвижных изображений и аудио информации. Этот комплект, в соответствии со стандартами ISO, включает в себя три алгоритма различного уровня сложности: Layer (уровень) I, Layer II и Layer III. Общая структура процесса кодирования одинакова для всех уровней. Для каждого уровня определен свой формат записи бит-потока и свой алгоритм декодирования. Алгоритмы MPEG основаны в целом на изученных свойствах восприятия звуковых сигналов слуховым аппаратом человека (то есть кодирование производится с использованием так называемой "психоакустической модели").
Кратко об алгоритме кодирования. Входной цифровой сигнал сначала раскладывается на частотные составляющие спектра. Затем этот спектр очищается от заведомо неслышных составляющих - низкочастотных шумов и наивысших гармоник, то есть фактически фильтруется. На следующем этапе производится значительно более сложный психоакустический анализ слышимого спектра частот. Это делается в том числе с целью выявления и удаления "замаскированных" частот (частот, которые не воспринимаются слуховым аппаратом в виду их приглушения другими частотами). После всех этих манипуляций из цифрового аудио сигнала исключается больше половины информации. Затем, в зависимости от уровня сложности используемого алгоритма, может быть также произведен анализ предсказуемости сигнала. Кроме этого, базируясь на том, что человеческое ухо способно различать направление звучания только средних частот, то в случае, когда кодируется стерео сигнал, его можно превратить в совмещенный стерео (joint stereo). Это значит, что фактически происходит отделение верхних и нижних частот и их кодирование в моно варианте (средние частоты остаются в режиме стерео). Далее, в случае появления, например, "тишины" в одном из каналов, "пустующее" место заполняется информацией либо повышающей качество другого канала, либо просто не поместившейся до этого. В довершение ко всему проводится сжатие уже готового бит-потока упрощенным аналогом алгоритма Хаффмана (Huffman), что позволяет также значительно уменьшить занимаемый потоком объем.
Комплект MPEG-1 предусмотрен для кодирования сигналов, оцифрованных с частотой дискретизации 32, 44.1 и 48 КГц. Как было указано выше, комплект MPEG-1 имеет три уровня (Layer I, II и III). Эти уровни имеют различия в обеспечиваемом коэффициенте сжатия и качестве звучания получаемых потоков. Layer I позволяет сигналы 44.1 КГц / 16 бит хранить без ощутимых потерь качества при скорости потока 384 Кбит/с, что составляет 4-х кратный выигрыш в занимаемом объеме; Layer II обеспечивает такое же качество при 194 Кбит/с, а Layer III - при 128 (или 112). Выигрыш Layer III очевиден, но скорость компрессии при его использовании самая низкая (надо отметить, что при современных скоростях процессоров это ограничение уже не заметно). Фактически, Layer III позволяет сжимать информацию в 10-12 раз без ощутимых потерь в качестве.
2) MPEG-2 (ноябрь 1994) - стандарт кодирования для цифрового телевидения. Стандарт MPEG-2 был специально разработан для кодирования ТВ сигналов вещательного телевидения, поэтому на рассмотрении MPEG-2 мы бы не останавливались, если бы в апреле 1997 этот комплект не получил "продолжение" в виде алгоритма MPEG-2 AAC (MPEG-2 Advanced Audio Coding - продвинутое аудио кодирование). Стандарт MPEG-2 AAC стал результатом кооперации усилий института Fraunhofer, компаний Sony, NEC и Dolby. MPEG-2 AAC является технологическим приемником MPEG-1. Существует несколько разновидностей этого алгоритма: Homeboy AAC, AT&T a2b AAC, Liquifier AAC, Astrid/Quartex AAC и Mayah AAC. Наиболее высокое качество звучания по сравнению c
MPEG-1 Layer III обеспечивают две предпоследние реализации. Все приведенные разновидности алгоритма AAC не являются совместимыми между собой.
Также, как и в комплекте аудио стандартов кодирования MPEG-1, в основе алгоритма AAC лежит психоакустический анализ сигнала. Вместе с тем, алгоритм AAC имеет в своем механизме множество дополнений, направленных на улучшение качества выходного аудио сигнала. В частности, используется другой тип преобразований, улучшена обработка шумов, изменен банк фильтров, а также улучшен способ записи выходного бит-потока. Кроме того, AAC позволяет хранить в закодированном аудио сигнале т.н. "водяные знаки"
(watermarks) - информацию об авторских правах. Эта информация встраивается в бит-поток при кодировании таким образом, что уничтожить ее становится невозможно не разрушив целостность аудио данных. Эта технология (в рамках Multimedia Protection Protocol) позволяет контролировать распространение аудио данных (что, кстати, является препятствием на пути распространения самого алгоритма и файлов, созданных с помощью него). Следует отметить, что алгоритм AAC не является обратно совместимым
(NBC - non backwards compatible) с уровнями MPEG-1 не смотря на то, что он представляет собой продолжение (доработку) MPEG-1 Layer I, II, III.
MPEG-2 AAC предусматривает три различных профиля кодирования: Main, LC (Low Complexity) и SSR (Scaleable Sampling Rate). В зависимости от того, какой профиль используется во время кодирования, изменяется время кодирования и качество получаемого цифрового потока. Наивысшее качество звучания (при самой медленной скорости компрессии) обеспечивает основной Main профиль. Это связано с тем, что профиль Main включает в себя все механизмы анализа и обработки входного потока. Профиль LC упрощен, что сказывается на качестве звучания получаемого потока, сильно отражается на скорости компрессии и, что более важно, декомпрессии. Профиль SSR также представляет собой упрощенный вариант профиля Main.
Говоря о качестве звука, можно сказать, что поток AAC (Main) 96 Кбит/с обеспечивает качество звучания, аналогичное потоку MPEG-1 Layer III 128 Кбит/с. При компрессии AAC 128 Кбит/с, качество звучания ощутимо превосходит MPEG-1 Layer III 128 Кбит/с.
3) MPEG-4 - стандарт для мультимедиа приложений: версия 1 (октябрь 1998) и версия 2 (декабрь 1999). Стандарт MPEG-4 - это особая статья. MPEG-4 не является просто алгоритмом сжатия, хранения и передачи видео или аудио информации. MPEG-4 - это новый способ представления информации,
это объектно-ориентированное представление мультимедиа данных. Стандарт оперирует объектами, организует из них иерархии, классы и прочее, выстраивает сцены и управляет их передачей. Объектами могут служить как обычные аудио или видео потоки, так и синтезированные аудио и графические данные (речь, текст, эффекты, звуки...). Такие сцены описываются на специальном языке. Не будем останавливаться подробно на этом стандарте - это тема отдельного обширного обсуждения. Следует только сказать, что в качестве средств компрессии аудио в MPEG-4 используется комплекс нескольких стандартов аудио кодирования: алгоритм MPEG-2 AAC, алгоритм TwinVQ, а также алгоритмы кодирования речи HVXC (Harmonic Vector eXcitation Coding) для битрейтов 2-4 Кбит/с и CELP (Code Excited Linear Predictive) - для битрейтов 4-24 Кбит/с. Кроме того, MPEG-4 имеет множество механизмов обеспечения масштабируемости.
4) MPEG-7 - универсализованный стандарт работы с мультимедиа информацией, предназначенный для обработки, фильтрации и управления мультимедиа информацией. Стандарт MPEG-7, разработка которого еще не окончена, вообще в корне отличается от всех иных стандартов MPEG. Стандарт разрабатывается не для установления каких-то рамок для передачи данных или типизации и описания данных какого-то конкретно рода. Стандарт предусмотрен как описательный, предназначенный для регламентации характеристик данных любого типа, вплоть до аналоговых. Использование MPEG-7 предполагается в тесной связи с MPEG-4.
Для удобства обращения со сжатыми потоками, все алгоритмы MPEG разработаны таким образом, что позволяют осуществлять декомпрессию (восстановление) и воспроизведение потока одновременно с его получением (download) - потоковая декомпрессия "на лету" (stream playback). Эта возможность очень широко используются в Интернет, где скорость передачи информации ограничена, а с использованием подобных алгоритмов появляется возможность обрабатывать информацию прямо во время ее получения, не дожидаясь окончания передачи.
- 2.4.3 Ацп с плавающей точкой……………………………………………
- 1 Цифровые фильтры
- 1.1 Явление Гиббса
- 1.1.1 Сущность явления Гиббса
- 1.1.2 Параметры эффекта
- 1.1.3 Последствия для практики
- 1.2 Весовые функции
- 1.2.1 Нейтрализация явления Гиббса в частотной области
- 1.2.2 Основные весовые функции
- 1.3 Типы фильтров
- 1.4 Разностное уравнение
- Нерекурсивные фильтры
- 1.5.1 Методика расчетов нцф
- 1.5.2 Идеальные частотные фильтры
- 1.5.3 Конечные приближения идеальных фильтров
- 1.5.3.1 Применение весовых функций
- 1.5.3.2 Весовая функция Кайзера
- 1.5.4 Дифференцирующие цифровые фильтры
- 1.5.5 Гладкие частотные фильтры
- 1.6 Рекурсивные фильтры
- 6.3 Интегрирующий рекурсивный фильтр.
- 1.6.1 Принципы рекурсивной фильтрации
- 1.6.2 Режекторные и селекторные фильтры
- 1.6.2.1 Комплексная z-плоскость.
- 1.6.2.2 Режекторные фильтры
- 1.6.2.3 Селекторный фильтр
- 1.6.3 Билинейное z-преобразование
- 1.6.4 Типы рекурсивных частотных фильтров
- 1.7 Импульсная характеристика фильтров
- Передаточные функции фильтров
- 1.9 Частотные характеристики фильтров
- 1.10 Частотный анализ цифровых фильтров
- 1.10.1 Сглаживающие фильтры и фильтры аппроксимации
- 1.10.1.1 Фильтры мнк 1-го порядка (мнк-1)
- 1.10.1.2 Фильтры мнк 2-го порядка (мнк-2)
- 1.10.1.3 Фильтры мнк 4-го порядка
- 1.10.2 Разностные операторы
- 1.10.2.1 Разностный оператор
- 1.10.2.2 Восстановление данных
- 1.10.2.3 Аппроксимация производных
- 1.10.3 Интегрирование данных
- 1.10.4 Расчёт фильтров по частотной характеристике
- 1.11 Фильтрация случайных сигналов
- 1.12 Структурные схемы цифровых фильтров
- Обращенные формы.
- 1.13 Фильтры Чебышева
- 1.14 Фильтры Баттерворта
- Свойства фильтров Баттерворта нижних частот:
- 1.15 Фильтры Бесселя
- 2 Аналого-цифровое преобразование
- 2.1 Цифровая обработка звуковых сигналов
- 2.2 Основы аналого-цифрового преобразования
- 2.2.1 Основные понятия и определения
- 2.3 Структура и алгоритм работы цап
- Контрольные вопросы
- 2.4 Структура и алгоритм работы ацп
- 2.4.1 Параллельные ацп
- 2.4.2 Ацп с поразрядным уравновешиванием
- 2.4.3 Ацп с плавающей точкой
- Контрольные вопросы
- Глава 3. Звук.
- 3.1 Аудиосигнал
- 3.1.1 Звуковые волны
- 3.1.2 Звук как электрический сигнал
- 3.1.3 Фаза
- 3.1.4 Сложение синусоидальных волн
- 3.2 Звуковая система
- 3.2.1 Назначение звуковой системы
- 3.2.2 Модель звуковой системы
- 3.2.3 Входные датчики
- 3.2.4 Выходные датчики
- 3.2.5 Простейшая звуковая система
- 3.3 Амплитудно-частотная характеристика
- 3.3.1 Способы записи ачх в спецификации звуковых устройств
- 3.3.2 Октавные соотношения и измерения
- 3.3.3 Ачх реальных устройств воспроизведения звука
- 3.3.4 Диапазон частот голоса и инструментов
- 3.3.5 Влияние акустических факторов
- 3.4 Единицы измерения, параметры звуковых сигналов
- 3.4.1 Децибел
- 3.4.2 Относительная мощность электрических сигналов дБm
- 3.4.3 Децибелы и уровень звука
- 3.4.5 Громкость, уровень сигнала и коэффициент усиления
- 3.4.6 Громкость
- 3.5 Динамический диапазон
- 3.5.1 Запас динамического диапазона
- 3.5.2 Выбор динамического диапазона для реальной звуковой системы
- 3.6 Цифровой звук
- 3.6.1 Частота дискретизации
- 3.6.2 Разрядность
- 3.6.3 Дизеринг
- 3.6.4 Нойс шейпинг
- 3.6.5 Джиттер
- 3.7 Методы и стандарты передачи речи по трактам связи, применяемые в современном оборудовании (7 кГц)
- 3.7.1 Импульсно-кодовая модуляция (pcm — Pulse-Code Modulation)
- 3.7.3 Помехоустойчивость методов икм
- 3.7.4 Методы эффективного кодирования речи
- 3.7.5 Кодирование речи в стандарте cdma
- 3.7.6 Речевые кодеки для ip-телефонии
- 3.7.7 Оценка качества кодирования речи
- 3.8 Общие сведения по мр3
- 3.8.1 Феномен мрз
- 3.8.2 Что такое формат мрз?
- 3.8.3 Качество записи мрз
- 3.8.4 Формат мрз и музыкальные компакт-диски
- 3.8.5 Работа со звукозаписями формата мрз
- 3.9 Основные понятия цифровой звукозаписи
- 3.9.1 Натуральное цифровое представление данных
- 3.9.2 Кодирование рсм
- 3.9.3 Стандартный формат оцифровки звука
- 3.9.4 Параметры дискретизации
- 3.9.5 Качество компакт-диска
- 3.9.6 Объем звукозаписей
- 3.9.7 Формат wav
- 3.10 Формат mp3
- 3.10.1 Сжатие звуковых данных
- 3.10.2 Сжатие с потерей информации
- 3.10.3 Ориентация на человека
- 3.10.4 Кратко об истории и характеристиках стандартов mpeg.
- 3.10.5 Что такое cbr и vbr?
- 3.10.6 Каковы отличия режимов cbr, vbr и abr?
- 3.10.7 Методы оценки сложности сигнала
- 3.10.8 Какие методы кодирования стерео информации используются в алгоритмах mpeg (и других)?
- 3.10.9 Какие параметры предпочтительны при кодировании mp3?
- 3.10.10 Какие альтернативные mpeg-1 Layer III (mp3) алгоритмы компрессии существуют?
- 3.11 OggVorbis
- 3.13 Flac
- 4 Сжатие видео
- 4.1 Общие положения алгоритмов сжатия изображений
- 4.1.1 Классы изображений
- 4.1.2 Классы приложений
- 4.1.3 Требования приложений к алгоритмам компрессии
- 4.1.4 Критерии сравнения алгоритмов
- 4.2 Алгоритмы сжатия
- Gif (CompuServe Graphics Interchange Format)
- 4.3 Вейвлет-преобразования
- 4.3.1 Вейвлеты, вейвлет-преобразования, виды и свойства Вейвлет анализ и прямое вейвлет-преобразование
- Непрерывное прямое и обратное вейвлет-преобразования
- Ортогональные вейвлеты
- Дискретное вейвлет-преобразование непрерывных сигналов
- Кратномасштабный анализ
- Пакетные вейвлеты.
- 4.3.2 Примеры применения вейвлетов Очистка сигнала от шума
- Очистка сигнала от шумов на основе вейвлет-преобразований.
- 4.4 Формат сжатия изображений jpeg
- 2) Дискретизация
- 3) Сдвиг Уровня
- 4) 8X8 Дискретное Косинусоидальное Преобразование (dct)
- 5) Зигзагообразная перестановка 64 dct коэффициентов
- 6) Квантование
- 7) RunLength кодирование нулей (rlc)
- 8) Конечный шаг - кодирование Хаффмана
- 4.5 Jpeg2000
- 4.5.1 Общая характеристика стандарта и основные принципы сжатия
- 4.5.2 Информационные потери в jpeg2000 на разных этапах обработки
- 4.5.3 Практическая реализация
- 4.5.4 Специализированные конверторы и просмотрщики
- 4.5.5 Основные задачи для развития и усовершенствования стандарта jpeg2000
- 4.6 Видеостандарт mpeg
- 4.6.1 Общее описание
- 4.6.2 Предварительная обработка
- 4.6.3 Преобразование макроблоков I-изображений
- 4.6.4 Преобразование макроблоков р-изображений
- 4.6.5 Преобразование макроблоков в-изображений
- 4.6.6 Разделы макроблоков
- 4.7 Mpeg-1
- Параметры mpeg-1
- 4.8 Mpeg-2
- 4.8.1 Стандарт кодирования mpeg-2
- 4.8.2 Компрессия видеоданных
- 4.8.3 Кодируемые кадры
- 4.8.4 Компенсация движения
- 4.8.5 Дискретно-косинусное преобразование
- 4.8.6 Профессиональный профиль стандарта mpeg-2
- 4.9.11 Плюсы и минусы mpeg-4
- 4.10 Стандарт hdtv