4.1.3 Требования приложений к алгоритмам компрессии
В предыдущем разделе мы определили, какие приложения являются потребителями алгоритмов архивации изображений. Однако заметим, что приложение определяет характер использования изображений (либо большое количество изображений хранится и используется, либо изображения скачиваются по сети, либо изображения велики по размерам, и нам необходима возможность получения лишь части...). Характер использования изображений задает степень важности следующих ниже противоречивых требований к алгоритму:
Высокая степень компрессии. Заметим, что далеко не для всех приложений актуальна высокая степень компрессии. Кроме того, некоторые алгоритмы дают лучшее соотношение качества к размеру файла при высоких степенях компрессии, однако проигрывают другим алгоритмам при низких степенях.
Высокое качество изображений. Выполнение этого требования напрямую противоречит выполнению предыдущего...
Высокая скорость компрессии. Это требование для некоторых алгоритмов с потерей информации является взаимоисключающим с первыми двумя. Интуитивно понятно, что чем больше времени мы будем анализировать изображение, пытаясь получить наивысшую степень компрессии, тем лучше будет результат. И, соответственно, чем меньше мы времени потратим на компрессию (анализ), тем ниже будет качество изображения и больше его размер.
Высокая скорость декомпрессии. Достаточно универсальное требование, актуальное для многих приложений. Однако можно привести примеры приложений, где время декомпрессии далеко не критично.
Масштабирование изображений. Данное требование подразумевает легкость изменения размеров изображения до размеров окна активного приложения. Дело в том, что одни алгоритмы позволяют легко масштабировать изображение прямо во время декомпрессии, в то время как другие не только не позволяют легко масштабировать, но и увеличивают вероятность появления неприятных артефактов после применения стандартных алгоритмов масштабирования к декомпрессированному изображению. Например, можно привести пример “плохого” изображения для алгоритма JPEG — это изображение с достаточно мелким регулярным рисунком (пиджак в мелкую клетку). Характер вносимых алгоритмом JPEG искажений таков, что уменьшение или увеличение изображения может дать неприятные эффекты.
Возможность показать огрубленное изображение (низкого разрешения), использовав только начало файла. Данная возможность актуальна для различного рода сетевых приложений, где перекачивание изображений может занять достаточно большое время, и желательно, получив начало файла, корректно показать preview. Заметим, что примитивная реализация указанного требования путем записывания в начало изображения его уменьшенной копии заметно ухудшит степень компрессии.
Устойчивость к ошибкам. Данное требование означает локальность нарушений в изображении при порче или потере фрагмента передаваемого файла. Данная возможность используется при широковещании (broadcasting — передача по многим адресам) изображений по сети, то есть в тех случаях, когда невозможно использовать протокол передачи, повторно запрашивающий данные у сервера при ошибках. Например, если передается видеоряд, то было бы неправильно использовать алгоритм, у которого сбой приводил бы к прекращению правильного показа всех последующих кадров. Данное требование противоречит высокой степени архивации, поскольку интуитивно понятно, что мы должны вводить в поток избыточную информацию. Однако для разных алгоритмов объем этой избыточной информации может существенно отличаться.
Учет специфики изображения. Более высокая степень архивации для класса изображений, которые статистически чаще будут применяться в нашем приложении. В предыдущих разделах это требование уже обсуждалось.
Редактируемость. Под редактируемостью понимается минимальная степень ухудшения качества изображения при его повторном сохранении после редактирования. Многие алгоритмы с потерей информации могут существенно испортить изображение за несколько итераций редактирования.
Небольшая стоимость аппаратной реализации. Эффективность программной реализации. Данные требования к алгоритму реально предъявляют не только производители игровых приставок, но и производители многих информационных систем. Так, декомпрессор фрактального алгоритма очень эффективно и коротко реализуется с использованием технологии MMX и распараллеливания вычислений, а сжатие по стандарту CCITT Group 3 легко реализуется аппаратно.
Очевидно, что для конкретной задачи нам будут очень важны одни требования и менее важны (и даже абсолютно безразличны) другие.
Итог: На практике для каждой задачи мы можем сформулировать набор приоритетов из требований, изложенных выше, который и определит наиболее подходящий в наших условиях алгоритм (либо набор алгоритмов) для ее решения.
Yandex.RTB R-A-252273-3
- 2.4.3 Ацп с плавающей точкой……………………………………………
- 1 Цифровые фильтры
- 1.1 Явление Гиббса
- 1.1.1 Сущность явления Гиббса
- 1.1.2 Параметры эффекта
- 1.1.3 Последствия для практики
- 1.2 Весовые функции
- 1.2.1 Нейтрализация явления Гиббса в частотной области
- 1.2.2 Основные весовые функции
- 1.3 Типы фильтров
- 1.4 Разностное уравнение
- Нерекурсивные фильтры
- 1.5.1 Методика расчетов нцф
- 1.5.2 Идеальные частотные фильтры
- 1.5.3 Конечные приближения идеальных фильтров
- 1.5.3.1 Применение весовых функций
- 1.5.3.2 Весовая функция Кайзера
- 1.5.4 Дифференцирующие цифровые фильтры
- 1.5.5 Гладкие частотные фильтры
- 1.6 Рекурсивные фильтры
- 6.3 Интегрирующий рекурсивный фильтр.
- 1.6.1 Принципы рекурсивной фильтрации
- 1.6.2 Режекторные и селекторные фильтры
- 1.6.2.1 Комплексная z-плоскость.
- 1.6.2.2 Режекторные фильтры
- 1.6.2.3 Селекторный фильтр
- 1.6.3 Билинейное z-преобразование
- 1.6.4 Типы рекурсивных частотных фильтров
- 1.7 Импульсная характеристика фильтров
- Передаточные функции фильтров
- 1.9 Частотные характеристики фильтров
- 1.10 Частотный анализ цифровых фильтров
- 1.10.1 Сглаживающие фильтры и фильтры аппроксимации
- 1.10.1.1 Фильтры мнк 1-го порядка (мнк-1)
- 1.10.1.2 Фильтры мнк 2-го порядка (мнк-2)
- 1.10.1.3 Фильтры мнк 4-го порядка
- 1.10.2 Разностные операторы
- 1.10.2.1 Разностный оператор
- 1.10.2.2 Восстановление данных
- 1.10.2.3 Аппроксимация производных
- 1.10.3 Интегрирование данных
- 1.10.4 Расчёт фильтров по частотной характеристике
- 1.11 Фильтрация случайных сигналов
- 1.12 Структурные схемы цифровых фильтров
- Обращенные формы.
- 1.13 Фильтры Чебышева
- 1.14 Фильтры Баттерворта
- Свойства фильтров Баттерворта нижних частот:
- 1.15 Фильтры Бесселя
- 2 Аналого-цифровое преобразование
- 2.1 Цифровая обработка звуковых сигналов
- 2.2 Основы аналого-цифрового преобразования
- 2.2.1 Основные понятия и определения
- 2.3 Структура и алгоритм работы цап
- Контрольные вопросы
- 2.4 Структура и алгоритм работы ацп
- 2.4.1 Параллельные ацп
- 2.4.2 Ацп с поразрядным уравновешиванием
- 2.4.3 Ацп с плавающей точкой
- Контрольные вопросы
- Глава 3. Звук.
- 3.1 Аудиосигнал
- 3.1.1 Звуковые волны
- 3.1.2 Звук как электрический сигнал
- 3.1.3 Фаза
- 3.1.4 Сложение синусоидальных волн
- 3.2 Звуковая система
- 3.2.1 Назначение звуковой системы
- 3.2.2 Модель звуковой системы
- 3.2.3 Входные датчики
- 3.2.4 Выходные датчики
- 3.2.5 Простейшая звуковая система
- 3.3 Амплитудно-частотная характеристика
- 3.3.1 Способы записи ачх в спецификации звуковых устройств
- 3.3.2 Октавные соотношения и измерения
- 3.3.3 Ачх реальных устройств воспроизведения звука
- 3.3.4 Диапазон частот голоса и инструментов
- 3.3.5 Влияние акустических факторов
- 3.4 Единицы измерения, параметры звуковых сигналов
- 3.4.1 Децибел
- 3.4.2 Относительная мощность электрических сигналов дБm
- 3.4.3 Децибелы и уровень звука
- 3.4.5 Громкость, уровень сигнала и коэффициент усиления
- 3.4.6 Громкость
- 3.5 Динамический диапазон
- 3.5.1 Запас динамического диапазона
- 3.5.2 Выбор динамического диапазона для реальной звуковой системы
- 3.6 Цифровой звук
- 3.6.1 Частота дискретизации
- 3.6.2 Разрядность
- 3.6.3 Дизеринг
- 3.6.4 Нойс шейпинг
- 3.6.5 Джиттер
- 3.7 Методы и стандарты передачи речи по трактам связи, применяемые в современном оборудовании (7 кГц)
- 3.7.1 Импульсно-кодовая модуляция (pcm — Pulse-Code Modulation)
- 3.7.3 Помехоустойчивость методов икм
- 3.7.4 Методы эффективного кодирования речи
- 3.7.5 Кодирование речи в стандарте cdma
- 3.7.6 Речевые кодеки для ip-телефонии
- 3.7.7 Оценка качества кодирования речи
- 3.8 Общие сведения по мр3
- 3.8.1 Феномен мрз
- 3.8.2 Что такое формат мрз?
- 3.8.3 Качество записи мрз
- 3.8.4 Формат мрз и музыкальные компакт-диски
- 3.8.5 Работа со звукозаписями формата мрз
- 3.9 Основные понятия цифровой звукозаписи
- 3.9.1 Натуральное цифровое представление данных
- 3.9.2 Кодирование рсм
- 3.9.3 Стандартный формат оцифровки звука
- 3.9.4 Параметры дискретизации
- 3.9.5 Качество компакт-диска
- 3.9.6 Объем звукозаписей
- 3.9.7 Формат wav
- 3.10 Формат mp3
- 3.10.1 Сжатие звуковых данных
- 3.10.2 Сжатие с потерей информации
- 3.10.3 Ориентация на человека
- 3.10.4 Кратко об истории и характеристиках стандартов mpeg.
- 3.10.5 Что такое cbr и vbr?
- 3.10.6 Каковы отличия режимов cbr, vbr и abr?
- 3.10.7 Методы оценки сложности сигнала
- 3.10.8 Какие методы кодирования стерео информации используются в алгоритмах mpeg (и других)?
- 3.10.9 Какие параметры предпочтительны при кодировании mp3?
- 3.10.10 Какие альтернативные mpeg-1 Layer III (mp3) алгоритмы компрессии существуют?
- 3.11 OggVorbis
- 3.13 Flac
- 4 Сжатие видео
- 4.1 Общие положения алгоритмов сжатия изображений
- 4.1.1 Классы изображений
- 4.1.2 Классы приложений
- 4.1.3 Требования приложений к алгоритмам компрессии
- 4.1.4 Критерии сравнения алгоритмов
- 4.2 Алгоритмы сжатия
- Gif (CompuServe Graphics Interchange Format)
- 4.3 Вейвлет-преобразования
- 4.3.1 Вейвлеты, вейвлет-преобразования, виды и свойства Вейвлет анализ и прямое вейвлет-преобразование
- Непрерывное прямое и обратное вейвлет-преобразования
- Ортогональные вейвлеты
- Дискретное вейвлет-преобразование непрерывных сигналов
- Кратномасштабный анализ
- Пакетные вейвлеты.
- 4.3.2 Примеры применения вейвлетов Очистка сигнала от шума
- Очистка сигнала от шумов на основе вейвлет-преобразований.
- 4.4 Формат сжатия изображений jpeg
- 2) Дискретизация
- 3) Сдвиг Уровня
- 4) 8X8 Дискретное Косинусоидальное Преобразование (dct)
- 5) Зигзагообразная перестановка 64 dct коэффициентов
- 6) Квантование
- 7) RunLength кодирование нулей (rlc)
- 8) Конечный шаг - кодирование Хаффмана
- 4.5 Jpeg2000
- 4.5.1 Общая характеристика стандарта и основные принципы сжатия
- 4.5.2 Информационные потери в jpeg2000 на разных этапах обработки
- 4.5.3 Практическая реализация
- 4.5.4 Специализированные конверторы и просмотрщики
- 4.5.5 Основные задачи для развития и усовершенствования стандарта jpeg2000
- 4.6 Видеостандарт mpeg
- 4.6.1 Общее описание
- 4.6.2 Предварительная обработка
- 4.6.3 Преобразование макроблоков I-изображений
- 4.6.4 Преобразование макроблоков р-изображений
- 4.6.5 Преобразование макроблоков в-изображений
- 4.6.6 Разделы макроблоков
- 4.7 Mpeg-1
- Параметры mpeg-1
- 4.8 Mpeg-2
- 4.8.1 Стандарт кодирования mpeg-2
- 4.8.2 Компрессия видеоданных
- 4.8.3 Кодируемые кадры
- 4.8.4 Компенсация движения
- 4.8.5 Дискретно-косинусное преобразование
- 4.8.6 Профессиональный профиль стандарта mpeg-2
- 4.9.11 Плюсы и минусы mpeg-4
- 4.10 Стандарт hdtv