logo
Лекции по ЦО АВС

1.1.3 Последствия для практики

При расчетах фильтров и усечении размеров их операторов явление Гиббса является весьма нежелательным, т.к. приводит к искажению формы передаточных характеристик фильтров. В качестве примера рассмотрим явление Гиббса применительно к фильтру низких частот.

Попытаемся реализовать передаточную функцию фильтра следующего вида:

H(f) = 1, при -0.2  f  0.2,

= 0, при -0.2 > f > 0.2,

в главном частотном диапазоне от -0.5 до 0.5. Функция четная, коэффициенты ряда Фурье представлены только косинусными членами:

an = 4 cos(2fn) df = 2 sin(0.4n)/(n).

Передаточная функция:

H(f) = 0.4 + 2 sin(0.4n) cos(2fn)/(n). (1.3.1)

Результат усечения ряда Фурье (1.3.1) до N = 7 приведен на рис. 1.3.1.

Рис. 1.3.1. Передаточные функции ФНЧ.

Как видно на рисунке, явление Гиббса существенно искажает передаточную функцию фильтра. Однако при реализации фильтров ограничение длины операторов фильтров является правилом их конструирования исходя из чисто практических соображений реализации.

Явление Гиббса имеет место при усечении любых числовых массивов. При обработке геофизических данных операция усечения числовых массивов, как одномерных, так и многомерных, относится к числу типовых. Вырезаются из профилей и площадей участки съемки с аномальными данными для их более детальной обработки и интерпретации. При анализе усекаются корреляционные функции, и соответственно свертываются с частотным образом весового окна вычисляемые спектры мощности, и пр. Во всех этих случаях мы можем столкнуться как с явлением Гиббса, так и с другими последствиями свертки функций в частотной области, в частности с цикличностью свертки, с определенным сглаживанием спектров усекаемых данных, которое может быть и нежелательным (снижение разрешающей способности), и полезным (повышение устойчивости спектров). В самих усекаемых данных мы не видим этих явлений, т.к. они проявляется в изменении их частотного образа, но при обработке данных, основной целью которой, как правило, и является изменение частотных соотношений в сигналах, последствия этих явлений могут сказаться самым неожиданным образом.

На рис. 1.3.2 показан другой пример искажений сигнала при усечении. Исходный аналоговый сигнал был вырезан из массива данных на интервале k = {0..60}, дискретизирован и переведен в цифровой форме в спектральную область для обработки. Дискретизация сигнала вызвала периодизацию его спектра, а дискретизация спектра вызвала периодизацию его динамического представления. Но на точках k=0 и k=60 в периодическом повторении исходного сигнала при усечении образовался скачок функции с бесконечным частотным спектром, а главный диапазон спектра дискретизированного сигнала ограничен интервалом его дискретизации (N=1/2t). Следовательно, спектр сигнала является искаженным за счет наложения спектров боковых периодов, а при восстановлении аналогового сигнала по спектру главного диапазона он восстанавливается из усеченного спектра. Это приводит к появлению явления Гиббса на обоих концах вырезанного сигнала (за счет периодизации сигнала), что наглядно видно на рис. 1.3.2.

Рис. 1.3.2.

Практически это означает, что при частотной обработке вырезанного сигнала будет обрабатываться не спектр исходного сигнала, а спектр, которому соответствует сигнал, восстанавливаемый по данному спектру с наложенным явлением Гиббса.

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4