1.10.1.1 Фильтры мнк 1-го порядка (мнк-1)
Простейший способ аппроксимации по МНК произвольной функции s(t) - с помощью полинома первой степени, т.е. функции вида y(t) = A+Bt (метод скользящих средних). В качестве примера произведем расчет симметричного фильтра на (2N+1) точек с окном от -N до N.
Для определения коэффициентов полинома найдем минимум функции приближения (функцию остаточных ошибок). С учетом дискретности данных по точкам tn = nt и принимая t = 1 для симметричного НЦФ с нумерацией отсчетов по n от центра окна фильтра (в системе координат фильтра), для функции остаточных ошибок имеем:
(A,B) = [sn - (A+B·n)]2.
Дифференцируем функцию остаточных ошибок по аргументам 'А, В' и, приравнивая полученные уравнения нулю, формируем 2 нормальных уравнения:
(sn-(A+B·n)) sn - A 1 - B n = 0,
(sn-(A+B·n))·n nsn - A n - B n2 = 0,
С учетом очевидного равенства n = 0, результат решения данных уравнений относительно значений А и В:
А = sn , B = nsn / n2.
Подставляем значения коэффициентов в уравнение аппрокси- мирующего полинома, переходим в систему координат по точкам k массива y(k+) = A+B·, где отсчет производится от точки k массива, против которой находится точка n = 0 фильтра, и получаем в общей форме уравнение фильтра аппроксимации:
y(k+) = sk-n + nsk-n / n2.
Для сглаживающего НЦФ вычисления производятся непосредственно для точки k в центре окна фильтра (= 0), при этом:
yk = sk-n. (10.1.1)
Рис. 10.1.1.
h(n) = {0.2, 0.2, 0.2, 0.2, 0.2}.
Передаточная функция фильтра в z-области:
H(z) = 0.2(z-2+z-1+1+z1+z2).
Коэффициент усиления дисперсии шумов:
Kq = n h2(n) = 1/(2N+1),
т.е. обратно пропорционален ширине окна фильтра. Зависимость значения Kq от ширины окна приведена на рис. 10.1.1.
Частотная характеристика фильтра (передаточная функция фильтра в частотной области) находится преобразованием Фурье импульсной реакции h(n) (фильтр симметричный, начало координат в центре фильтра) или подстановкой z = exp(-j) в выражение передаточной функции H(z). И в том, и в другом случае получаем:
H() = 0.2[exp(2j)+exp(j)+1+exp(-j)+exp(-2j)]. (10.1.2)
Можно использовать и непосредственно уравнение фильтра, в данном случае уравнение (10.1.1). Подадим на вход фильтра гармонический сигнал вида sk = exp(jk). Так как сигнальная функция относится к числу собственных, на выходе фильтра будем иметь сигнал yk = H()exp(jk). Подставляя выражения входного и выходного сигналов в уравнение (10.1.1), получаем:
H() exp(jk) = 0.2 exp(j(k-n))= 0.2 exp(jk) exp(-jn).
Отсюда, выражение для передаточной функции:
H() = 0.2 exp(-jn) = 0.2[exp(2j)+exp(j)+1+exp(-j)+exp(-2j)],
что полностью идентично выражению (10.1.2).
Следует запомнить: если оператор фильтра известен, то для получения его частотной характеристики достаточно подставить сигнал exp(jn) непосредственно в линейное уравнение фильтра. Тем самым выполняются сразу 2 операции: производится z- преобразование h(n) и подставляется z = exp(-jn), т.е. осуществляется трансформация h(n)→ h(z) → H().
Так как импульсная реакция фильтра МНК симметрична (функция h(n) четная), частотное представление передаточной функции должно быть вещественным, в чем нетрудно убедиться, объединив комплексно сопряженные члены выражения (10.1.2):
H() = 0.2(1+2 cos +2 cos 2).
Альтернативное представление передаточной функции H() для фильтра с произвольным количеством коэффициентов 2N+1 нам достаточно хорошо известно, как нормированный фурье-образ прямоугольной функции, каковой по существу и является селектирующее окно фильтра (10.1.1):
H() = sin((N+1/2))/[(N+1/2)] = sinc((N+1/2)). (10.1.3)
Рис. 10.1.2. Сглаживающие фильтры МНК.
Графики передаточных функций (10.1.3) приведены на рисунке 10.1.2. По графикам можно видеть коэффициент передачи сигнала с входа на выход фильтра на любой частоте. Без ослабления (с коэффициентом передачи 1) сглаживающим фильтром пропускается (и должен пропускаться по физическому смыслу сглаживания данных) только сигнал постоянного уровня (нулевой частоты). Этим же определяется и тот фактор (который стоит запомнить), что сумма коэффициентов сглаживающего НЦФ всегда должна быть равна 1 (отсчет ненормированного дискретного фурье-преобразования на частоте = 0 равен сумме значений входной функции).
Чем больше число коэффициентов фильтра (шире окно фильтра), тем уже полоса пропускания низких частот. Подавление высоких частот довольно неравномерное, с осцилляциями передаточной функции отно- сительно нуля. На рис. 10.1.3 приведен пример фильтрации случайного сигнала (шума) фильтрами с различным размером окна.
Рис. 10.1.3. Фильтрация шумов фильтрами МНК 1-го порядка.
Частотное представление передаточных функций позволяет наглядно видеть особенности фильтров и целенаправленно улучшать их харак- теристики. Так, если в рассмотренном нами фильтре с однородной импульсной реакцией hn = 1/(2N+1) уменьшить два крайних члена в 2 раза и заново нормировать к сумме hn = 1, то частотные характеристики фильтра заметно улучшаются. Для нахождения передаточной функции моди- фицированного фильтра снимем в выражении (10.1.3) нормировку (умножим на 2N+1), вычтем значение 1/2 крайних членов (exp(-jN)+exp(jN))/2 = cos(N) и заново пронормируем полученное выражение (разделим на 2N). Пример новой передаточной функции при N=3 также приведен на рисунке 10.1.2. Передаточные функции модифицированных таким образом фильтров приводятся к нулю на частоте Найквиста, при этом несколько расширяется полоса пропускания низких частот и уменьшается амплитуда осцилляций в области подавления высоких частот. Если смотреть на сглаживание, как на операцию подавления высокочастотных помех, то модифицированные фильтры без сомнения больше соответствует своему целевому назначению.
Рис. 10.1.4.
Допустим, что нужно обеспечить максимальное подавление дисперсии шумов при минимальном искажении верхней граничной частоты сигнала fв, на которой мощность шумов равна мощности сигнальной гармоники fв. Значение fв равно 0.08 частоты Найквиста дискретизации данных, т.е. fв = 0.04 при t=1. Относительные значения мощности (дисперсии) гармоники и шума принимаем равными 1. Спектр модели сигнала + шума в сопоставлении с передаточными функциями фильтров приведен на рис. 10.1.4.
Таблица 10.1.1.
N | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
Ку(fв) | 1 | 0.98 | 0.94 | 0.88 | 0.8 | 0.7 | 0.6 | 0.51 |
Wu(N) | 1 | 0.96 | 0.88 | 0.77 | 0.64 | 0.51 | 0.38 | 0.26 |
Wq(N) | 1 | 0.33 | 0.2 | 0.14 | 0.11 | 0.09 | 0.08 | 0.07 |
Кс/ш | 1 | 2.88 | 4.4 | 5.4 | 5.8 | 5.6 | 4.89 | 3.85 |
| 1 | 0.35 | 0.23 | 0.18 | 0.17 | 0.18 | 0.21 | 0.26 |
| 1 | 0.32 | 0.2 | 0.15 | 0.15 | 0.18 | 0.23 | 0.31 |
По формуле (10.1.3) вычисляем коэффициенты Ку(fв) усиления фильтров с N от 0 до 6 на частоте fв (см. таблицу 10.1.1). При мощности гармоники Wu = 1 амплитудное значение гармоники на входе фильтра равно U = = 1.41. Мощности гармоник на выходе фильтров в зависимости от N:
Wu(N)= 0.5·[U· Ку(fв)]2.
Рис. 10.1.5.
Максимум отношения
Кс/ш Wq(N)/Wu(N)
определяет оптимальный фильтр с максимальным увеличением отношения сигнал/шум, т.е., по существу, коэффициент усиления отношения сигнал/шум при выполнении фильтрации с учетом изменения амплитудных значений полезной части сигнала.
Рис. 10.1.6.
Рис. 10.1.7. Сигналы на входе и выходе фильтра МНК 1-го порядка.
Yandex.RTB R-A-252273-3
- 2.4.3 Ацп с плавающей точкой……………………………………………
- 1 Цифровые фильтры
- 1.1 Явление Гиббса
- 1.1.1 Сущность явления Гиббса
- 1.1.2 Параметры эффекта
- 1.1.3 Последствия для практики
- 1.2 Весовые функции
- 1.2.1 Нейтрализация явления Гиббса в частотной области
- 1.2.2 Основные весовые функции
- 1.3 Типы фильтров
- 1.4 Разностное уравнение
- Нерекурсивные фильтры
- 1.5.1 Методика расчетов нцф
- 1.5.2 Идеальные частотные фильтры
- 1.5.3 Конечные приближения идеальных фильтров
- 1.5.3.1 Применение весовых функций
- 1.5.3.2 Весовая функция Кайзера
- 1.5.4 Дифференцирующие цифровые фильтры
- 1.5.5 Гладкие частотные фильтры
- 1.6 Рекурсивные фильтры
- 6.3 Интегрирующий рекурсивный фильтр.
- 1.6.1 Принципы рекурсивной фильтрации
- 1.6.2 Режекторные и селекторные фильтры
- 1.6.2.1 Комплексная z-плоскость.
- 1.6.2.2 Режекторные фильтры
- 1.6.2.3 Селекторный фильтр
- 1.6.3 Билинейное z-преобразование
- 1.6.4 Типы рекурсивных частотных фильтров
- 1.7 Импульсная характеристика фильтров
- Передаточные функции фильтров
- 1.9 Частотные характеристики фильтров
- 1.10 Частотный анализ цифровых фильтров
- 1.10.1 Сглаживающие фильтры и фильтры аппроксимации
- 1.10.1.1 Фильтры мнк 1-го порядка (мнк-1)
- 1.10.1.2 Фильтры мнк 2-го порядка (мнк-2)
- 1.10.1.3 Фильтры мнк 4-го порядка
- 1.10.2 Разностные операторы
- 1.10.2.1 Разностный оператор
- 1.10.2.2 Восстановление данных
- 1.10.2.3 Аппроксимация производных
- 1.10.3 Интегрирование данных
- 1.10.4 Расчёт фильтров по частотной характеристике
- 1.11 Фильтрация случайных сигналов
- 1.12 Структурные схемы цифровых фильтров
- Обращенные формы.
- 1.13 Фильтры Чебышева
- 1.14 Фильтры Баттерворта
- Свойства фильтров Баттерворта нижних частот:
- 1.15 Фильтры Бесселя
- 2 Аналого-цифровое преобразование
- 2.1 Цифровая обработка звуковых сигналов
- 2.2 Основы аналого-цифрового преобразования
- 2.2.1 Основные понятия и определения
- 2.3 Структура и алгоритм работы цап
- Контрольные вопросы
- 2.4 Структура и алгоритм работы ацп
- 2.4.1 Параллельные ацп
- 2.4.2 Ацп с поразрядным уравновешиванием
- 2.4.3 Ацп с плавающей точкой
- Контрольные вопросы
- Глава 3. Звук.
- 3.1 Аудиосигнал
- 3.1.1 Звуковые волны
- 3.1.2 Звук как электрический сигнал
- 3.1.3 Фаза
- 3.1.4 Сложение синусоидальных волн
- 3.2 Звуковая система
- 3.2.1 Назначение звуковой системы
- 3.2.2 Модель звуковой системы
- 3.2.3 Входные датчики
- 3.2.4 Выходные датчики
- 3.2.5 Простейшая звуковая система
- 3.3 Амплитудно-частотная характеристика
- 3.3.1 Способы записи ачх в спецификации звуковых устройств
- 3.3.2 Октавные соотношения и измерения
- 3.3.3 Ачх реальных устройств воспроизведения звука
- 3.3.4 Диапазон частот голоса и инструментов
- 3.3.5 Влияние акустических факторов
- 3.4 Единицы измерения, параметры звуковых сигналов
- 3.4.1 Децибел
- 3.4.2 Относительная мощность электрических сигналов дБm
- 3.4.3 Децибелы и уровень звука
- 3.4.5 Громкость, уровень сигнала и коэффициент усиления
- 3.4.6 Громкость
- 3.5 Динамический диапазон
- 3.5.1 Запас динамического диапазона
- 3.5.2 Выбор динамического диапазона для реальной звуковой системы
- 3.6 Цифровой звук
- 3.6.1 Частота дискретизации
- 3.6.2 Разрядность
- 3.6.3 Дизеринг
- 3.6.4 Нойс шейпинг
- 3.6.5 Джиттер
- 3.7 Методы и стандарты передачи речи по трактам связи, применяемые в современном оборудовании (7 кГц)
- 3.7.1 Импульсно-кодовая модуляция (pcm — Pulse-Code Modulation)
- 3.7.3 Помехоустойчивость методов икм
- 3.7.4 Методы эффективного кодирования речи
- 3.7.5 Кодирование речи в стандарте cdma
- 3.7.6 Речевые кодеки для ip-телефонии
- 3.7.7 Оценка качества кодирования речи
- 3.8 Общие сведения по мр3
- 3.8.1 Феномен мрз
- 3.8.2 Что такое формат мрз?
- 3.8.3 Качество записи мрз
- 3.8.4 Формат мрз и музыкальные компакт-диски
- 3.8.5 Работа со звукозаписями формата мрз
- 3.9 Основные понятия цифровой звукозаписи
- 3.9.1 Натуральное цифровое представление данных
- 3.9.2 Кодирование рсм
- 3.9.3 Стандартный формат оцифровки звука
- 3.9.4 Параметры дискретизации
- 3.9.5 Качество компакт-диска
- 3.9.6 Объем звукозаписей
- 3.9.7 Формат wav
- 3.10 Формат mp3
- 3.10.1 Сжатие звуковых данных
- 3.10.2 Сжатие с потерей информации
- 3.10.3 Ориентация на человека
- 3.10.4 Кратко об истории и характеристиках стандартов mpeg.
- 3.10.5 Что такое cbr и vbr?
- 3.10.6 Каковы отличия режимов cbr, vbr и abr?
- 3.10.7 Методы оценки сложности сигнала
- 3.10.8 Какие методы кодирования стерео информации используются в алгоритмах mpeg (и других)?
- 3.10.9 Какие параметры предпочтительны при кодировании mp3?
- 3.10.10 Какие альтернативные mpeg-1 Layer III (mp3) алгоритмы компрессии существуют?
- 3.11 OggVorbis
- 3.13 Flac
- 4 Сжатие видео
- 4.1 Общие положения алгоритмов сжатия изображений
- 4.1.1 Классы изображений
- 4.1.2 Классы приложений
- 4.1.3 Требования приложений к алгоритмам компрессии
- 4.1.4 Критерии сравнения алгоритмов
- 4.2 Алгоритмы сжатия
- Gif (CompuServe Graphics Interchange Format)
- 4.3 Вейвлет-преобразования
- 4.3.1 Вейвлеты, вейвлет-преобразования, виды и свойства Вейвлет анализ и прямое вейвлет-преобразование
- Непрерывное прямое и обратное вейвлет-преобразования
- Ортогональные вейвлеты
- Дискретное вейвлет-преобразование непрерывных сигналов
- Кратномасштабный анализ
- Пакетные вейвлеты.
- 4.3.2 Примеры применения вейвлетов Очистка сигнала от шума
- Очистка сигнала от шумов на основе вейвлет-преобразований.
- 4.4 Формат сжатия изображений jpeg
- 2) Дискретизация
- 3) Сдвиг Уровня
- 4) 8X8 Дискретное Косинусоидальное Преобразование (dct)
- 5) Зигзагообразная перестановка 64 dct коэффициентов
- 6) Квантование
- 7) RunLength кодирование нулей (rlc)
- 8) Конечный шаг - кодирование Хаффмана
- 4.5 Jpeg2000
- 4.5.1 Общая характеристика стандарта и основные принципы сжатия
- 4.5.2 Информационные потери в jpeg2000 на разных этапах обработки
- 4.5.3 Практическая реализация
- 4.5.4 Специализированные конверторы и просмотрщики
- 4.5.5 Основные задачи для развития и усовершенствования стандарта jpeg2000
- 4.6 Видеостандарт mpeg
- 4.6.1 Общее описание
- 4.6.2 Предварительная обработка
- 4.6.3 Преобразование макроблоков I-изображений
- 4.6.4 Преобразование макроблоков р-изображений
- 4.6.5 Преобразование макроблоков в-изображений
- 4.6.6 Разделы макроблоков
- 4.7 Mpeg-1
- Параметры mpeg-1
- 4.8 Mpeg-2
- 4.8.1 Стандарт кодирования mpeg-2
- 4.8.2 Компрессия видеоданных
- 4.8.3 Кодируемые кадры
- 4.8.4 Компенсация движения
- 4.8.5 Дискретно-косинусное преобразование
- 4.8.6 Профессиональный профиль стандарта mpeg-2
- 4.9.11 Плюсы и минусы mpeg-4
- 4.10 Стандарт hdtv