logo
Лекции по ЦО АВС

3.6.1 Частота дискретизации

Итак, преобразование аналогового сигнала в цифровой состоит из двух этапов: дискретизации по времени и квантования по амплитуде. Дискретизация по времени означает, что сигнал представляется рядом своих отсчетов (семплов), взятых через равные промежутки времени. Например, когда мы говорим, что частота дискретизации 44,1 кГц, то это значит, что сигнал измеряется 44100 раз в течении секунды

Основной вопрос на первом этапе преобразования аналогового сигнала в цифровой (оцифровки) состоит в выборе частоты дискретизации аналогового сигнала. Как уже было сказано, чем больше частота - тем точнее соответствует цифровой сигнал аналоговому. Однако, пропорционально увеличению частоты возрастают:

а) интенсивность потока цифровых данных, а пропускные возможности интерфейсов не безграничны, особенно если записывается/воспроизводится одновременно несколько каналов;

б) вычислительная нагрузка на цифровые процессоры эффектов, а их вычислительные возможности также ограничены;

в) объем памяти, необходимой для хранения цифрового сигнала. Очевидно, что необходим компромисс.

От выбора частоты дискретизации зависит частотный диапазон полученного цифрового звука или максимальная частота аналогового сигнала, правильно представленная в цифровом. Считается, что диапазон частот, которые слышит человек, составляет от 20 до 20000 Гц. Согласно известной теореме Котельникова, для того, чтобы аналоговый (непрерывный по времени) сигнал можно было точно восстановить по его отсчетам, частота дискретизации должна быть как минимум вдвое больше максимальной звуковой частоты. Таким образом, если реальный аналоговый сигнал, который мы собираемся преобразовать в цифровую форму, содержит частотные компоненты от 0 Гц до 20 кГц, то частота дискретизации такого сигнала должна быть не меньше, чем 40 кГц. Сегодня самыми распространенными частотами дискретизации являются 44,1 кГц (CD) и 48 кГц (DAT). Впрочем, в последнее время идет немало разговоров о том, что обертоны, расположенные свыше 20 кГц, вносят немалый вклад в звучание и в результате появляются преобразователи, использующие частоты дискретизации 96 кГц и 192 кГц, а в недалеком будущем ожидается появление и систем с частотой 384 кГц.

Тем не менее, исходный аналоговый сигнал обычно имеет спектр, сосредоточенный в основном в полосе частот от 20 Гц до, примерно, 20 кГц. Однако, кроме того в сигнале обычно содержатся помехи с частотами до нескольких сот килогерц. Это различные трудно устранимые наводки от компьютерной техники, промышленных и электробытовых приборов, трамваев, троллейбусов и т. д. На рисунке внизу вы видите спектр исходного аналогового сигнала.

В процессе дискретизации частотный спектр аналогового сигнала претерпевает значительные изменения. Он становится периодическим. Спектр исходного сигнала периодически повторяется с периодом равным частоте дискретизации. Результат этого процесса показан на рисунке внизу. Высокочастотные компоненты исходного сигнала (помехи) попадают в низкочастотную часть спектра.

Все это выглядит весьма непривычно, если не сказать, что вообще противоречит здравому смыслу! Получается, что происходит дискретизация высокочастотных сигналов, лежащих значительно выше не только частоты Найквиста, но и самой частоты дискретизации. На первый взгляд это даже противоречит упомянутой выше теореме Котельникова. Однако это происходит именно так.

Второе изменение спектра заключается в его расширении. В отличии от "свертки" этот факт уже не противоречит здравому смыслу и вполне очевиден. После дискретизации относительно низкочастотный исходный аналоговый сигнал представляет из себя последовательный временной ряд очень узких импульсов с разной амплитудой и с очень широким спектром до нескольких мегагерц (математический факт - чем уже импульс, тем шире его спектр). Поэтому и в целом спектр такой последовательности импульсов расширяется до тех же нескольких мегагерц. Таким образом, спектр дискретизированного сигнала значительно шире спектра исходного аналогового сигнала.

Так как весь исходный спектр свернулся в полосу частот от 0 Гц до частоты Котельникова, то логично и естественно, что расширение спектра происходит дублированием спектра из полосы от 0 Гц до частоты Котельникова.

Итак, реальные аналоговые сигналы часто содержат высокочастотные составляющие, плохо поддающиеся оцифровке на стандартных частотах 44,1 кГц или 48 кГц. Поэтому перед дискретизацией необходима аналоговая фильтрация, то есть удаление всех частот выше частоты Котельникова, являющаяся довольно сложной задачей. Аналоговые фильтры не могут пропустить, скажем, все частоты от 0 Гц до 24 кГц и подавить все частоты выше 24 кГц. Аналоговый фильтр низких частот начинает подавлять высокие частоты начиная с некоторой частоты, называемой частотой среза. Подавление плавно усиливается с ростом частоты. Поэтому, чтобы добиться отсутствия частот выше 24 кГц необходимо устанавливать частоту среза фильтра примерно на 16..20 кГц, а это уже плохо, так как будут ослаблены полезные частоты в слышимом диапазоне 16..20 кГц. Еще одна неприятность состоит в том, что чем более узкой мы пытаемся сделать переходную область между полосой пропускания и полосой подавления фильтра, тем сильнее вносимые фазовые искажения, длиннее переходный процесс (фильтр начинает "звенеть") и тем сложнее и капризнее в настройке такой аналоговый фильтр.

В современных АЦП эта проблема решается методом дискретизации на повышенной частоте. По этому методу диапазон частот входного аналогового сигнала ограничивается с помощью сравнительно несложного аналогового фильтра. Причем частота среза фильтра выбирается значительно выше высшей полезной частоты, а переходная полоса фильтра делается достаточно широкой.

Таким образом, исключаются и завал полезных высших частот, и фазовые искажения, характерные для аналоговых фильтров с узкой переходной полосой. Далее, отфильтрованный, с ограниченным по частоте спектром, сигнал дискретизируется на достаточно высокой частоте, исключающей наложение и искажение спектра - алиазинг (aliasing). Затем дискретные отсчеты сигнала преобразуются в последовательность чисел с помощью АЦП. После этого мы имеем поток цифровых данных, представляющих аналоговый сигнал, включающий как полезные, так и нежелательные высокочастотные компоненты и помехи. Эти цифровые данные пропускаются через цифровой фильтр с очень узкой переходной полосой и очень большим подавлением нежелательных высокочастотных компонент. Сегодня расчет и создание таких цифровых фильтров, к тому же не вносящих никаких фазовых искажений, не представляют больших трудностей.

После цифрового фильтра получается цифровое представление сигнала, имеющего спектр, правильно ограниченный по частоте. Применяя к такому сигналу теорему Котельникова мы можем резко понизить частоту его дискретизации до удвоенной величины наивысшей полезной частотной составляющей, чего мы и хотели добиться. Надо отметить, что часто цифровые фильтры находятся в той же микросхеме, что и другие узлы АЦП, так что пользователь даже может и не подозревать какие сложные процессы происходят в его АЦП.

Применяется дискретизация на повышенной частоте (oversampling) и в цифро-аналоговых преобразователях (ЦАП). В ЦАП также есть проблема сложности аналоговых восстанавливающих (интерполирующих) фильтров. Ведь сразу после ЦАП сигнал представляет собой серию дискретных импульсов, имеющих многочисленные алиазинговые спектральные компоненты. На аналоговый фильтр в этом случае возлагается задача полностью пропустить сигнал нужного частотного диапазона (скажем 0..24 кГц) и, по возможности, наиболее полно подавить ненужные высокочастотные компоненты. И, конечно, чисто аналоговому фильтру выполнить такие противоречивые требования очень сложно. Поэтому сначала цифровой сигнал интерполируют, то есть вставляют дополнительные отсчеты, вычисленные по специальным алгоритмам и, тем самым, резко увеличивают частоту дискретизации. Это приводит к тому, что алиазинговые спектральные компоненты на выходе ЦАП далеко отстоят от частотных компонент основного сигнала и, соответственно, чтобы отфильтровать (подавить) их достаточно применить простой аналоговый фильтр.

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4