3.6.1 Частота дискретизации
Итак, преобразование аналогового сигнала в цифровой состоит из двух этапов: дискретизации по времени и квантования по амплитуде. Дискретизация по времени означает, что сигнал представляется рядом своих отсчетов (семплов), взятых через равные промежутки времени. Например, когда мы говорим, что частота дискретизации 44,1 кГц, то это значит, что сигнал измеряется 44100 раз в течении секунды
Основной вопрос на первом этапе преобразования аналогового сигнала в цифровой (оцифровки) состоит в выборе частоты дискретизации аналогового сигнала. Как уже было сказано, чем больше частота - тем точнее соответствует цифровой сигнал аналоговому. Однако, пропорционально увеличению частоты возрастают:
а) интенсивность потока цифровых данных, а пропускные возможности интерфейсов не безграничны, особенно если записывается/воспроизводится одновременно несколько каналов;
б) вычислительная нагрузка на цифровые процессоры эффектов, а их вычислительные возможности также ограничены;
в) объем памяти, необходимой для хранения цифрового сигнала. Очевидно, что необходим компромисс.
От выбора частоты дискретизации зависит частотный диапазон полученного цифрового звука или максимальная частота аналогового сигнала, правильно представленная в цифровом. Считается, что диапазон частот, которые слышит человек, составляет от 20 до 20000 Гц. Согласно известной теореме Котельникова, для того, чтобы аналоговый (непрерывный по времени) сигнал можно было точно восстановить по его отсчетам, частота дискретизации должна быть как минимум вдвое больше максимальной звуковой частоты. Таким образом, если реальный аналоговый сигнал, который мы собираемся преобразовать в цифровую форму, содержит частотные компоненты от 0 Гц до 20 кГц, то частота дискретизации такого сигнала должна быть не меньше, чем 40 кГц. Сегодня самыми распространенными частотами дискретизации являются 44,1 кГц (CD) и 48 кГц (DAT). Впрочем, в последнее время идет немало разговоров о том, что обертоны, расположенные свыше 20 кГц, вносят немалый вклад в звучание и в результате появляются преобразователи, использующие частоты дискретизации 96 кГц и 192 кГц, а в недалеком будущем ожидается появление и систем с частотой 384 кГц.
Тем не менее, исходный аналоговый сигнал обычно имеет спектр, сосредоточенный в основном в полосе частот от 20 Гц до, примерно, 20 кГц. Однако, кроме того в сигнале обычно содержатся помехи с частотами до нескольких сот килогерц. Это различные трудно устранимые наводки от компьютерной техники, промышленных и электробытовых приборов, трамваев, троллейбусов и т. д. На рисунке внизу вы видите спектр исходного аналогового сигнала.
В процессе дискретизации частотный спектр аналогового сигнала претерпевает значительные изменения. Он становится периодическим. Спектр исходного сигнала периодически повторяется с периодом равным частоте дискретизации. Результат этого процесса показан на рисунке внизу. Высокочастотные компоненты исходного сигнала (помехи) попадают в низкочастотную часть спектра.
Все это выглядит весьма непривычно, если не сказать, что вообще противоречит здравому смыслу! Получается, что происходит дискретизация высокочастотных сигналов, лежащих значительно выше не только частоты Найквиста, но и самой частоты дискретизации. На первый взгляд это даже противоречит упомянутой выше теореме Котельникова. Однако это происходит именно так.
Второе изменение спектра заключается в его расширении. В отличии от "свертки" этот факт уже не противоречит здравому смыслу и вполне очевиден. После дискретизации относительно низкочастотный исходный аналоговый сигнал представляет из себя последовательный временной ряд очень узких импульсов с разной амплитудой и с очень широким спектром до нескольких мегагерц (математический факт - чем уже импульс, тем шире его спектр). Поэтому и в целом спектр такой последовательности импульсов расширяется до тех же нескольких мегагерц. Таким образом, спектр дискретизированного сигнала значительно шире спектра исходного аналогового сигнала.
Так как весь исходный спектр свернулся в полосу частот от 0 Гц до частоты Котельникова, то логично и естественно, что расширение спектра происходит дублированием спектра из полосы от 0 Гц до частоты Котельникова.
Итак, реальные аналоговые сигналы часто содержат высокочастотные составляющие, плохо поддающиеся оцифровке на стандартных частотах 44,1 кГц или 48 кГц. Поэтому перед дискретизацией необходима аналоговая фильтрация, то есть удаление всех частот выше частоты Котельникова, являющаяся довольно сложной задачей. Аналоговые фильтры не могут пропустить, скажем, все частоты от 0 Гц до 24 кГц и подавить все частоты выше 24 кГц. Аналоговый фильтр низких частот начинает подавлять высокие частоты начиная с некоторой частоты, называемой частотой среза. Подавление плавно усиливается с ростом частоты. Поэтому, чтобы добиться отсутствия частот выше 24 кГц необходимо устанавливать частоту среза фильтра примерно на 16..20 кГц, а это уже плохо, так как будут ослаблены полезные частоты в слышимом диапазоне 16..20 кГц. Еще одна неприятность состоит в том, что чем более узкой мы пытаемся сделать переходную область между полосой пропускания и полосой подавления фильтра, тем сильнее вносимые фазовые искажения, длиннее переходный процесс (фильтр начинает "звенеть") и тем сложнее и капризнее в настройке такой аналоговый фильтр.
В современных АЦП эта проблема решается методом дискретизации на повышенной частоте. По этому методу диапазон частот входного аналогового сигнала ограничивается с помощью сравнительно несложного аналогового фильтра. Причем частота среза фильтра выбирается значительно выше высшей полезной частоты, а переходная полоса фильтра делается достаточно широкой.
Таким образом, исключаются и завал полезных высших частот, и фазовые искажения, характерные для аналоговых фильтров с узкой переходной полосой. Далее, отфильтрованный, с ограниченным по частоте спектром, сигнал дискретизируется на достаточно высокой частоте, исключающей наложение и искажение спектра - алиазинг (aliasing). Затем дискретные отсчеты сигнала преобразуются в последовательность чисел с помощью АЦП. После этого мы имеем поток цифровых данных, представляющих аналоговый сигнал, включающий как полезные, так и нежелательные высокочастотные компоненты и помехи. Эти цифровые данные пропускаются через цифровой фильтр с очень узкой переходной полосой и очень большим подавлением нежелательных высокочастотных компонент. Сегодня расчет и создание таких цифровых фильтров, к тому же не вносящих никаких фазовых искажений, не представляют больших трудностей.
После цифрового фильтра получается цифровое представление сигнала, имеющего спектр, правильно ограниченный по частоте. Применяя к такому сигналу теорему Котельникова мы можем резко понизить частоту его дискретизации до удвоенной величины наивысшей полезной частотной составляющей, чего мы и хотели добиться. Надо отметить, что часто цифровые фильтры находятся в той же микросхеме, что и другие узлы АЦП, так что пользователь даже может и не подозревать какие сложные процессы происходят в его АЦП.
Применяется дискретизация на повышенной частоте (oversampling) и в цифро-аналоговых преобразователях (ЦАП). В ЦАП также есть проблема сложности аналоговых восстанавливающих (интерполирующих) фильтров. Ведь сразу после ЦАП сигнал представляет собой серию дискретных импульсов, имеющих многочисленные алиазинговые спектральные компоненты. На аналоговый фильтр в этом случае возлагается задача полностью пропустить сигнал нужного частотного диапазона (скажем 0..24 кГц) и, по возможности, наиболее полно подавить ненужные высокочастотные компоненты. И, конечно, чисто аналоговому фильтру выполнить такие противоречивые требования очень сложно. Поэтому сначала цифровой сигнал интерполируют, то есть вставляют дополнительные отсчеты, вычисленные по специальным алгоритмам и, тем самым, резко увеличивают частоту дискретизации. Это приводит к тому, что алиазинговые спектральные компоненты на выходе ЦАП далеко отстоят от частотных компонент основного сигнала и, соответственно, чтобы отфильтровать (подавить) их достаточно применить простой аналоговый фильтр.
Yandex.RTB R-A-252273-3
- 2.4.3 Ацп с плавающей точкой……………………………………………
- 1 Цифровые фильтры
- 1.1 Явление Гиббса
- 1.1.1 Сущность явления Гиббса
- 1.1.2 Параметры эффекта
- 1.1.3 Последствия для практики
- 1.2 Весовые функции
- 1.2.1 Нейтрализация явления Гиббса в частотной области
- 1.2.2 Основные весовые функции
- 1.3 Типы фильтров
- 1.4 Разностное уравнение
- Нерекурсивные фильтры
- 1.5.1 Методика расчетов нцф
- 1.5.2 Идеальные частотные фильтры
- 1.5.3 Конечные приближения идеальных фильтров
- 1.5.3.1 Применение весовых функций
- 1.5.3.2 Весовая функция Кайзера
- 1.5.4 Дифференцирующие цифровые фильтры
- 1.5.5 Гладкие частотные фильтры
- 1.6 Рекурсивные фильтры
- 6.3 Интегрирующий рекурсивный фильтр.
- 1.6.1 Принципы рекурсивной фильтрации
- 1.6.2 Режекторные и селекторные фильтры
- 1.6.2.1 Комплексная z-плоскость.
- 1.6.2.2 Режекторные фильтры
- 1.6.2.3 Селекторный фильтр
- 1.6.3 Билинейное z-преобразование
- 1.6.4 Типы рекурсивных частотных фильтров
- 1.7 Импульсная характеристика фильтров
- Передаточные функции фильтров
- 1.9 Частотные характеристики фильтров
- 1.10 Частотный анализ цифровых фильтров
- 1.10.1 Сглаживающие фильтры и фильтры аппроксимации
- 1.10.1.1 Фильтры мнк 1-го порядка (мнк-1)
- 1.10.1.2 Фильтры мнк 2-го порядка (мнк-2)
- 1.10.1.3 Фильтры мнк 4-го порядка
- 1.10.2 Разностные операторы
- 1.10.2.1 Разностный оператор
- 1.10.2.2 Восстановление данных
- 1.10.2.3 Аппроксимация производных
- 1.10.3 Интегрирование данных
- 1.10.4 Расчёт фильтров по частотной характеристике
- 1.11 Фильтрация случайных сигналов
- 1.12 Структурные схемы цифровых фильтров
- Обращенные формы.
- 1.13 Фильтры Чебышева
- 1.14 Фильтры Баттерворта
- Свойства фильтров Баттерворта нижних частот:
- 1.15 Фильтры Бесселя
- 2 Аналого-цифровое преобразование
- 2.1 Цифровая обработка звуковых сигналов
- 2.2 Основы аналого-цифрового преобразования
- 2.2.1 Основные понятия и определения
- 2.3 Структура и алгоритм работы цап
- Контрольные вопросы
- 2.4 Структура и алгоритм работы ацп
- 2.4.1 Параллельные ацп
- 2.4.2 Ацп с поразрядным уравновешиванием
- 2.4.3 Ацп с плавающей точкой
- Контрольные вопросы
- Глава 3. Звук.
- 3.1 Аудиосигнал
- 3.1.1 Звуковые волны
- 3.1.2 Звук как электрический сигнал
- 3.1.3 Фаза
- 3.1.4 Сложение синусоидальных волн
- 3.2 Звуковая система
- 3.2.1 Назначение звуковой системы
- 3.2.2 Модель звуковой системы
- 3.2.3 Входные датчики
- 3.2.4 Выходные датчики
- 3.2.5 Простейшая звуковая система
- 3.3 Амплитудно-частотная характеристика
- 3.3.1 Способы записи ачх в спецификации звуковых устройств
- 3.3.2 Октавные соотношения и измерения
- 3.3.3 Ачх реальных устройств воспроизведения звука
- 3.3.4 Диапазон частот голоса и инструментов
- 3.3.5 Влияние акустических факторов
- 3.4 Единицы измерения, параметры звуковых сигналов
- 3.4.1 Децибел
- 3.4.2 Относительная мощность электрических сигналов дБm
- 3.4.3 Децибелы и уровень звука
- 3.4.5 Громкость, уровень сигнала и коэффициент усиления
- 3.4.6 Громкость
- 3.5 Динамический диапазон
- 3.5.1 Запас динамического диапазона
- 3.5.2 Выбор динамического диапазона для реальной звуковой системы
- 3.6 Цифровой звук
- 3.6.1 Частота дискретизации
- 3.6.2 Разрядность
- 3.6.3 Дизеринг
- 3.6.4 Нойс шейпинг
- 3.6.5 Джиттер
- 3.7 Методы и стандарты передачи речи по трактам связи, применяемые в современном оборудовании (7 кГц)
- 3.7.1 Импульсно-кодовая модуляция (pcm — Pulse-Code Modulation)
- 3.7.3 Помехоустойчивость методов икм
- 3.7.4 Методы эффективного кодирования речи
- 3.7.5 Кодирование речи в стандарте cdma
- 3.7.6 Речевые кодеки для ip-телефонии
- 3.7.7 Оценка качества кодирования речи
- 3.8 Общие сведения по мр3
- 3.8.1 Феномен мрз
- 3.8.2 Что такое формат мрз?
- 3.8.3 Качество записи мрз
- 3.8.4 Формат мрз и музыкальные компакт-диски
- 3.8.5 Работа со звукозаписями формата мрз
- 3.9 Основные понятия цифровой звукозаписи
- 3.9.1 Натуральное цифровое представление данных
- 3.9.2 Кодирование рсм
- 3.9.3 Стандартный формат оцифровки звука
- 3.9.4 Параметры дискретизации
- 3.9.5 Качество компакт-диска
- 3.9.6 Объем звукозаписей
- 3.9.7 Формат wav
- 3.10 Формат mp3
- 3.10.1 Сжатие звуковых данных
- 3.10.2 Сжатие с потерей информации
- 3.10.3 Ориентация на человека
- 3.10.4 Кратко об истории и характеристиках стандартов mpeg.
- 3.10.5 Что такое cbr и vbr?
- 3.10.6 Каковы отличия режимов cbr, vbr и abr?
- 3.10.7 Методы оценки сложности сигнала
- 3.10.8 Какие методы кодирования стерео информации используются в алгоритмах mpeg (и других)?
- 3.10.9 Какие параметры предпочтительны при кодировании mp3?
- 3.10.10 Какие альтернативные mpeg-1 Layer III (mp3) алгоритмы компрессии существуют?
- 3.11 OggVorbis
- 3.13 Flac
- 4 Сжатие видео
- 4.1 Общие положения алгоритмов сжатия изображений
- 4.1.1 Классы изображений
- 4.1.2 Классы приложений
- 4.1.3 Требования приложений к алгоритмам компрессии
- 4.1.4 Критерии сравнения алгоритмов
- 4.2 Алгоритмы сжатия
- Gif (CompuServe Graphics Interchange Format)
- 4.3 Вейвлет-преобразования
- 4.3.1 Вейвлеты, вейвлет-преобразования, виды и свойства Вейвлет анализ и прямое вейвлет-преобразование
- Непрерывное прямое и обратное вейвлет-преобразования
- Ортогональные вейвлеты
- Дискретное вейвлет-преобразование непрерывных сигналов
- Кратномасштабный анализ
- Пакетные вейвлеты.
- 4.3.2 Примеры применения вейвлетов Очистка сигнала от шума
- Очистка сигнала от шумов на основе вейвлет-преобразований.
- 4.4 Формат сжатия изображений jpeg
- 2) Дискретизация
- 3) Сдвиг Уровня
- 4) 8X8 Дискретное Косинусоидальное Преобразование (dct)
- 5) Зигзагообразная перестановка 64 dct коэффициентов
- 6) Квантование
- 7) RunLength кодирование нулей (rlc)
- 8) Конечный шаг - кодирование Хаффмана
- 4.5 Jpeg2000
- 4.5.1 Общая характеристика стандарта и основные принципы сжатия
- 4.5.2 Информационные потери в jpeg2000 на разных этапах обработки
- 4.5.3 Практическая реализация
- 4.5.4 Специализированные конверторы и просмотрщики
- 4.5.5 Основные задачи для развития и усовершенствования стандарта jpeg2000
- 4.6 Видеостандарт mpeg
- 4.6.1 Общее описание
- 4.6.2 Предварительная обработка
- 4.6.3 Преобразование макроблоков I-изображений
- 4.6.4 Преобразование макроблоков р-изображений
- 4.6.5 Преобразование макроблоков в-изображений
- 4.6.6 Разделы макроблоков
- 4.7 Mpeg-1
- Параметры mpeg-1
- 4.8 Mpeg-2
- 4.8.1 Стандарт кодирования mpeg-2
- 4.8.2 Компрессия видеоданных
- 4.8.3 Кодируемые кадры
- 4.8.4 Компенсация движения
- 4.8.5 Дискретно-косинусное преобразование
- 4.8.6 Профессиональный профиль стандарта mpeg-2
- 4.9.11 Плюсы и минусы mpeg-4
- 4.10 Стандарт hdtv