4.10 Стандарт hdtv
HDTV (ТВЧ - Телевидение Высокой Четкости) - сегодня это самая передовая и высокотехнологичная область цифрового телевидения, сравнимая по своему значению с появлением цветного телевидения в 60-х годах 20 века. В буквальном смысле англоязычных аббревиатур. HDTV (High Definition Television) . это часть DTV (Digital Television).
HDTV поддерживает стандарты 1080i и 720p, обладает широкоэкранным 16:9 изображением, звуком Dolby Digital 5.1. и, соответственно, является наивысшей точкой развития телевизионных технологий.
Посредством HDTV обеспечивается доставка в каждый дом необыкновенно чистого, яркого и четкого изображения, практически совпадающего по качеству с 35-мм кинопленкой, и с многоканальным звуковым сопровождением.
Высокая четкость (HD) означает, что число линий и число пикселей в каждой линии телевизионной картинки существенно увеличены по сравнению с телевидением стандартной четкости (SD). В то время как телевизионное SD-изображение передается с разрешением 720x576 пикселей, HD-изображение имеет разрешение 1920x1080 пикселей. Число элементов изображения, передаваемых за одну секунду, увеличено в 5 раз. Это позволяет существенно увеличить чистоту, четкость и детализацию изображения и объясняет тот восторг, который вызывает просмотр HDTV-картинки на высококачественных плоскопанельных дисплеях или на проекторах в домашних кинотеатрах.
Cтандарты HDTV
Сегодня в мире распространены в основном два стандарта, которые используются для HDTV-вещания . 720p (p - прогрессивная развертка) и 1080i (i - чересстрочная развертка). Стандарт 1080i определен в Рекомендациях ITU-R BT.709-5.
Изображение состоит из 1080 активных линий по 1920 отсчетов в каждой, соотношение сторон - 16:9, использованы квадратные пиксели. Стандарт 720р определен SMPTE как телевизионный стандарт 296M-2001. Этот стандарт обеспечивает 720 линий в кадре и 1280 отсчетов в линии. Соотношение сторон - 16:9, использованы квадратные пиксели.
Традиционное телевидение использует так называемое "чересстрочное" сканирование, при котором каждый кадр отображается на экране в два захода. В первом заходе выводятся нечетные линии за 1/50 секунды, во втором за такое же время - четные линии. Вывод полного кадра происходит 25 раз в секунду. В системах прогрессивного сканирования полный кадр изображения выводится каждую 1/50 секунду.
Достоинства и недостатки стандартов HDTV:
Прогрессивный стандарт является более простым для компрессии и приводит к более низкой скорости передачи данных.
Вывод движущегося изображения лучше осуществлять в формате 720р/50, чересстрочное сканирование приводит к возникновению артефактов при быстром движении изображения в случае, если показ идет на дисплеях с системой прогрессивного сканирования.
720р/50 обеспечивает изображение с меньшим общим количеством артефактов, чем 1080i.
Производство в 1080i в настоящее время является более простым благодаря более доступному оборудованию.
В Таблице перечислены стандарты, которые должны поддерживать европейские HD-дисплеи, чтобы называться HDTV-совместимыми.
Стандарт | Пиксели в линии x линии в кадре | Режим развертки | Частота кадров | Соотношение сторон кадра |
720p/50 | 1280x720 | Прогрессивная | 50 кадр/с | 16:9 |
720p/60 | 1280x720 | Прогрессивная | 59.94/60 кадр/с | 16:9 |
1080i/25 | 1920x1080 | Чересстрочная | 50 полей/сек | 16:9 |
1080i/30 | 1920x1080 | Чересстрочная | 59.94/60 полей/сек | 16:9 |
Кодирование видео
До настоящего времени все существующие в мире HDTV стандарты (ATSC, DVB, ISDB) были основаны на схеме видеокомпрессии MPEG-2 и использовали в качестве основы транспортный поток (MPEG-2 Systems Transport Layer). В настоящее время стандарт DVB дорабатывается для включения в него более современных инструментов аудио/видеокомпрессии, например, таких как H.264 (MPEG-4 AVC) и, может быть, позднее, SMPTE VC-1.
Факторы, влияющие на развитие HDTV, и перспективы
Согласно аналитическим исследованиям - в 2006 и 2007 годах следующие факторы, способствующие продвижению рынка, приведут к "нашествию" HDTV в Европе:
Значительная степень распространения HD-телевизоров, главным образом, LCD и плазменных.
Внедрение HD DVD.
Увеличение объемов производства HD-контента.
Доступность HDTV-ресиверов на рынке.
Чемпионат Мира по футболу в Германии.
Олимпийские игры в Турине.
С 2008 года развитие HD-рынка будет ускоряться следующими факторами:
Растущая доступность "HD ready" телевизоров.
Достижение ведущими провайдерами платного телевидения критических уровней развития на всех основных рынках.
Увеличение числа телевизионных HD-каналов и HD DVD.
Олимпийские Игры 2008 года и Кубок Мира по футболу 2010 года.
По прогнозам, в 2010 году в Европе будет насчитываться от 60 до 80 спутниковых HD-телеканалов, от 21 до 27 кабельных и от 4 до 14 эфирных HD-каналов. Спорт можно рассматривать в качестве наиболее востребованного контента. Он является главной темой для HD-каналов после кино, а главные спортивные события, такие как Олимпиады, Кубки мира и Чемпионаты по футболу, транслируемые на этих каналах, напрямую влияют на уровень продаж HD-оборудования.
Yandex.RTB R-A-252273-3
- 2.4.3 Ацп с плавающей точкой……………………………………………
- 1 Цифровые фильтры
- 1.1 Явление Гиббса
- 1.1.1 Сущность явления Гиббса
- 1.1.2 Параметры эффекта
- 1.1.3 Последствия для практики
- 1.2 Весовые функции
- 1.2.1 Нейтрализация явления Гиббса в частотной области
- 1.2.2 Основные весовые функции
- 1.3 Типы фильтров
- 1.4 Разностное уравнение
- Нерекурсивные фильтры
- 1.5.1 Методика расчетов нцф
- 1.5.2 Идеальные частотные фильтры
- 1.5.3 Конечные приближения идеальных фильтров
- 1.5.3.1 Применение весовых функций
- 1.5.3.2 Весовая функция Кайзера
- 1.5.4 Дифференцирующие цифровые фильтры
- 1.5.5 Гладкие частотные фильтры
- 1.6 Рекурсивные фильтры
- 6.3 Интегрирующий рекурсивный фильтр.
- 1.6.1 Принципы рекурсивной фильтрации
- 1.6.2 Режекторные и селекторные фильтры
- 1.6.2.1 Комплексная z-плоскость.
- 1.6.2.2 Режекторные фильтры
- 1.6.2.3 Селекторный фильтр
- 1.6.3 Билинейное z-преобразование
- 1.6.4 Типы рекурсивных частотных фильтров
- 1.7 Импульсная характеристика фильтров
- Передаточные функции фильтров
- 1.9 Частотные характеристики фильтров
- 1.10 Частотный анализ цифровых фильтров
- 1.10.1 Сглаживающие фильтры и фильтры аппроксимации
- 1.10.1.1 Фильтры мнк 1-го порядка (мнк-1)
- 1.10.1.2 Фильтры мнк 2-го порядка (мнк-2)
- 1.10.1.3 Фильтры мнк 4-го порядка
- 1.10.2 Разностные операторы
- 1.10.2.1 Разностный оператор
- 1.10.2.2 Восстановление данных
- 1.10.2.3 Аппроксимация производных
- 1.10.3 Интегрирование данных
- 1.10.4 Расчёт фильтров по частотной характеристике
- 1.11 Фильтрация случайных сигналов
- 1.12 Структурные схемы цифровых фильтров
- Обращенные формы.
- 1.13 Фильтры Чебышева
- 1.14 Фильтры Баттерворта
- Свойства фильтров Баттерворта нижних частот:
- 1.15 Фильтры Бесселя
- 2 Аналого-цифровое преобразование
- 2.1 Цифровая обработка звуковых сигналов
- 2.2 Основы аналого-цифрового преобразования
- 2.2.1 Основные понятия и определения
- 2.3 Структура и алгоритм работы цап
- Контрольные вопросы
- 2.4 Структура и алгоритм работы ацп
- 2.4.1 Параллельные ацп
- 2.4.2 Ацп с поразрядным уравновешиванием
- 2.4.3 Ацп с плавающей точкой
- Контрольные вопросы
- Глава 3. Звук.
- 3.1 Аудиосигнал
- 3.1.1 Звуковые волны
- 3.1.2 Звук как электрический сигнал
- 3.1.3 Фаза
- 3.1.4 Сложение синусоидальных волн
- 3.2 Звуковая система
- 3.2.1 Назначение звуковой системы
- 3.2.2 Модель звуковой системы
- 3.2.3 Входные датчики
- 3.2.4 Выходные датчики
- 3.2.5 Простейшая звуковая система
- 3.3 Амплитудно-частотная характеристика
- 3.3.1 Способы записи ачх в спецификации звуковых устройств
- 3.3.2 Октавные соотношения и измерения
- 3.3.3 Ачх реальных устройств воспроизведения звука
- 3.3.4 Диапазон частот голоса и инструментов
- 3.3.5 Влияние акустических факторов
- 3.4 Единицы измерения, параметры звуковых сигналов
- 3.4.1 Децибел
- 3.4.2 Относительная мощность электрических сигналов дБm
- 3.4.3 Децибелы и уровень звука
- 3.4.5 Громкость, уровень сигнала и коэффициент усиления
- 3.4.6 Громкость
- 3.5 Динамический диапазон
- 3.5.1 Запас динамического диапазона
- 3.5.2 Выбор динамического диапазона для реальной звуковой системы
- 3.6 Цифровой звук
- 3.6.1 Частота дискретизации
- 3.6.2 Разрядность
- 3.6.3 Дизеринг
- 3.6.4 Нойс шейпинг
- 3.6.5 Джиттер
- 3.7 Методы и стандарты передачи речи по трактам связи, применяемые в современном оборудовании (7 кГц)
- 3.7.1 Импульсно-кодовая модуляция (pcm — Pulse-Code Modulation)
- 3.7.3 Помехоустойчивость методов икм
- 3.7.4 Методы эффективного кодирования речи
- 3.7.5 Кодирование речи в стандарте cdma
- 3.7.6 Речевые кодеки для ip-телефонии
- 3.7.7 Оценка качества кодирования речи
- 3.8 Общие сведения по мр3
- 3.8.1 Феномен мрз
- 3.8.2 Что такое формат мрз?
- 3.8.3 Качество записи мрз
- 3.8.4 Формат мрз и музыкальные компакт-диски
- 3.8.5 Работа со звукозаписями формата мрз
- 3.9 Основные понятия цифровой звукозаписи
- 3.9.1 Натуральное цифровое представление данных
- 3.9.2 Кодирование рсм
- 3.9.3 Стандартный формат оцифровки звука
- 3.9.4 Параметры дискретизации
- 3.9.5 Качество компакт-диска
- 3.9.6 Объем звукозаписей
- 3.9.7 Формат wav
- 3.10 Формат mp3
- 3.10.1 Сжатие звуковых данных
- 3.10.2 Сжатие с потерей информации
- 3.10.3 Ориентация на человека
- 3.10.4 Кратко об истории и характеристиках стандартов mpeg.
- 3.10.5 Что такое cbr и vbr?
- 3.10.6 Каковы отличия режимов cbr, vbr и abr?
- 3.10.7 Методы оценки сложности сигнала
- 3.10.8 Какие методы кодирования стерео информации используются в алгоритмах mpeg (и других)?
- 3.10.9 Какие параметры предпочтительны при кодировании mp3?
- 3.10.10 Какие альтернативные mpeg-1 Layer III (mp3) алгоритмы компрессии существуют?
- 3.11 OggVorbis
- 3.13 Flac
- 4 Сжатие видео
- 4.1 Общие положения алгоритмов сжатия изображений
- 4.1.1 Классы изображений
- 4.1.2 Классы приложений
- 4.1.3 Требования приложений к алгоритмам компрессии
- 4.1.4 Критерии сравнения алгоритмов
- 4.2 Алгоритмы сжатия
- Gif (CompuServe Graphics Interchange Format)
- 4.3 Вейвлет-преобразования
- 4.3.1 Вейвлеты, вейвлет-преобразования, виды и свойства Вейвлет анализ и прямое вейвлет-преобразование
- Непрерывное прямое и обратное вейвлет-преобразования
- Ортогональные вейвлеты
- Дискретное вейвлет-преобразование непрерывных сигналов
- Кратномасштабный анализ
- Пакетные вейвлеты.
- 4.3.2 Примеры применения вейвлетов Очистка сигнала от шума
- Очистка сигнала от шумов на основе вейвлет-преобразований.
- 4.4 Формат сжатия изображений jpeg
- 2) Дискретизация
- 3) Сдвиг Уровня
- 4) 8X8 Дискретное Косинусоидальное Преобразование (dct)
- 5) Зигзагообразная перестановка 64 dct коэффициентов
- 6) Квантование
- 7) RunLength кодирование нулей (rlc)
- 8) Конечный шаг - кодирование Хаффмана
- 4.5 Jpeg2000
- 4.5.1 Общая характеристика стандарта и основные принципы сжатия
- 4.5.2 Информационные потери в jpeg2000 на разных этапах обработки
- 4.5.3 Практическая реализация
- 4.5.4 Специализированные конверторы и просмотрщики
- 4.5.5 Основные задачи для развития и усовершенствования стандарта jpeg2000
- 4.6 Видеостандарт mpeg
- 4.6.1 Общее описание
- 4.6.2 Предварительная обработка
- 4.6.3 Преобразование макроблоков I-изображений
- 4.6.4 Преобразование макроблоков р-изображений
- 4.6.5 Преобразование макроблоков в-изображений
- 4.6.6 Разделы макроблоков
- 4.7 Mpeg-1
- Параметры mpeg-1
- 4.8 Mpeg-2
- 4.8.1 Стандарт кодирования mpeg-2
- 4.8.2 Компрессия видеоданных
- 4.8.3 Кодируемые кадры
- 4.8.4 Компенсация движения
- 4.8.5 Дискретно-косинусное преобразование
- 4.8.6 Профессиональный профиль стандарта mpeg-2
- 4.9.11 Плюсы и минусы mpeg-4
- 4.10 Стандарт hdtv