1.11 Фильтрация случайных сигналов
Если сигнал на входе фильтра является детерминированным, то его соотношение с выходным сигналом однозначно определяется импульсным откликом фильтра. Таким же однозначным является соотношение входа - выхода и для случайных сигналов, однако в силу природы последних аналитическое представление как входного сигнала, так и отклика системы, не представляется возможным. Для описания реакции фильтра на случайный входной сигнал используется статистический подход. Если параметры входного сигнала специально не оговариваются, то по умолчанию принимается, что на вход фильтра поступает реализация случайного стационарного сигнала x(k·t) с нулевым средним, которая вызывает сигнал y(k·t) на выходе фильтра. Значение t, как обычно, принимаем равным 1.
Допустим, что фильтр имеет импульсный отклик h(n) = exp(-a·n), n ³ 0. Зададим на входе фильтра стационарный квазидетерминированный случайный сигнал, который не обладает свойством эргодичности, но имеет все свойства случайного сигнала, и может быть описан в явной математической форме:
x(k) = A + cos(2·k+),
где A и - взаимно независимые случайные величины, причем значение равномерно распределено в интервале [0, 2]. При этом выходной сигнал определится выражением:
y(k) = h(n) * x(k-n) º h(n)×x(k-n) = A/3 + [3·cos(2k+) + 2·sin(2k+)]/13.
Из этого выражения следует, что выходной сигнал фильтра также является случайным и содержит те же самые случайные параметры, что и входной сигнал, а, следовательно, для него существуют определенные статистические характеристики.
Математическое ожидание произвольного входного случайного стационарного сигнала x(k) на выходе фильтра определится выражением:
= М{y(k)}= M{ h(n)·x(k-n)}= M{x(k-n)}×h(n)
= h(n) ·Кпс
Отсюда следует, что математическое ожидание выходных сигналов фильтра равно математическому ожиданию входных сигналов, умноженному на коэффициент усиления фильтром постоянной составляющей. При Кпс = 1 среднее значение выходных сигналов не изменяется и равно среднему значению входных сигналов. Если фильтр не пропускает постоянную составляющую сигналов (сумма коэффициентов импульсного отклика фильтра равна нулю), то случайный выходной сигнал всегда будет иметь нулевое математическое ожидание.
Корреляционные соотношения. Для центрированных входных сигналов x(k) размером (0-К) функция автокорреляции (ФАК) вычисляется по формуле:
Rx(n) = [1/(K+1-n)] x(k)·x(k+n).
По аналогичной формуле может быть вычислена и ФАК выходных сигналов. Для произведения выходных сигналов y(k) и y(k+n), образующих функцию автокорреляции выходных сигналов, можно также записать:
y(k)×y(k+n) = h(i)h(j) x(k-i)x(k+n-j)
Если взять математические ожидания от обеих частей этого равенства, то, с учетом соотношения в правой части под знаками сумм
M{x(k-i) x(k+n-j)} = -Rx(k-i-k-n+j) = Rx(n+i-j),
получим:
Ry(n) = h(i)h(j) Rx(n+i-j)ºRx(n) * h(n+i) * h(n-j)
Таким образом, функция автокорреляции выходного сигнала равна ФАК входного сигнала, свернутой дважды, в прямом и обратном направлении, с импульсным откликом фильтра, что сохраняет четность ФАК выходного сигнала. Для нецентрированных процессов аналогичное заключение действительно и для ковариационных функций. На рис. 11.1 приведен пример ФАК входной и выходной случайных последовательностей при фильтрации RC-фильтром, форма импульсного отклика которого также приведена на рисунке.
Рис. 11.1. Функции корреляционных коэффициентов.
Заметим, что для свертки импульсных откликов, производя замену nj = m, мы имеем равенство:
h(n+i) * h(n-j) = h(m+i+j) * h(m) = h(m) * h(m+p) = Kh(m),
где Kh(m) - функция ковариации импульсного отклика фильтра. Отсюда:
Ry(n) = Rx(n) * Kh(m). (11.2')
Это означает появление в случайном сигнале на выходе фильтра определенной корреляционной зависимости, определяемой инерционностью фильтра. Эффективный интервал k корреляции данных в сигнале тем меньше, чем выше верхняя граничная частота в его спектра (по уровню 0.5):
к = /в =1/2fв.
Оценка интервала корреляции для конечных (непериодических) функций, как правило, производится непосредственно по функциям автокорреляции R(n):
k = 2·n|R(n)/R(0)| - 1,
где значение n ограничивается величиной 3-5 интервалов спада центрального пика до величины порядка 0.1×R(0) (дальше обычно начинаются статистические флюктуации значения R(n) около нулевой линии, вызванные ограниченностью выборки). Без такого ограничения за счет суммирования модуля флюктуаций, не несущих информации, значение k завышается относительно расчетного по спектральной характеристике сигнала.
Рис. 11.2. Функции корреляционных коэффициентов большой выборки.
k = 2·n|Kh(n)/Kh(0)| - 1, n ≥ 0.
Для взаимной корреляционной функции (ВКФ) Rxy входного и выходного сигналов соответственно имеем:
x(k)*y(k+n) = h(i) x(k)·y(k+n-i)
Rxy(n) = h(i) Rx(n-i)º h(i) * Rx(n-i) 1
т.е. функция взаимной корреляции входного и выходного сигналов равна свертке ФАК входного сигнала с функцией импульсного отклика фильтра. Заключение действительно и для функций ковариации.
Другая взаимно корреляционная функция Ryx может быть получена из соотношения:
Ryx(n) = Rxy(-n) º h(i) * Rx(n+i). (11.3')
Отметим, что для статистически независимых случайных величин при одностороннем импульсном отклике (h(i) = 0 при i<0) функция Rxy(n) также является односторонней, и равна 0 при n<0, а функция Ryx соответственно равна 0 при n>0.
Спектр мощности выходного сигнала. Если на вход фильтра с импульсным откликом h(k) ó H(f) поступает случайный стационарный эргодический сигнал x(k) ó XТ(f), имеющий на интервале Т функцию автокорреляции Rx(n) и спектр мощности Wx(f), то на выходе фильтра регистрируется стационарный эргодический сигнал y(k) ó YT(f) = XТ(f)H(f). Соответственно, энергетический спектр выходного сигнала на том же интервале:
|YT(f)|2 = |XT(f)|2 |H(f)|2. (11.4)
Оценка спектра мощности (спектральной плотности энергии):
Wy(f) » (1/T) |XТ(f)|2 |H(f)|2= Wx(f) |H(f)|2. (11.5)
Спектр мощности сигнала на выходе фильтра равен спектру мощности входного сигнала, умноженному на квадрат модуля частотной характеристики фильтра. С учетом четности корреляционных функций спектр мощности выходного сигнала также является четной действительной функцией и не имеет фазовой характеристики процесса.
Спектр мощности сигнала и его функция автокорреляции связаны преобразованием Фурье:
Ry(n) ó |Y()|2 = Wy().
Дисперсия выходного сигнала (средняя мощность) определяется с использованием формулы (11.5):
y2 = Ry(0) = Wx(f) |H(f)|2 df º Rx(0) h2(n) = x2 h2(n). (11.6)
Если сигнал нецентрированный и значение дисперсии входного сигнала неизвестно, то по аналогичным формулам вычисляется сначала средний квадрат выходного сигнала или так называемая средняя мощность сигнала:
= = Ry(0) º h2(n) º Wx(f) |H(f)|2 df, (11.7)
Вывод: средняя мощность выходного сигнала равна средней мощности входного сигнала, умноженной на сумму квадратов коэффициентов импульсного отклика фильтра. Для центрированных случайных сигналов средняя мощность равна дисперсии сигналов. Для нецентрированных выходных сигналов:
y2 = - 2 º ( - 2) h2(n). (11.8)
Взаимный спектр мощности входного и выходного сигнала:
Wxy(f) » (1/T)XT(f)YT(f) = (1/T)|XT(f)|2 H(f) = Wx(f)H(f). (11.9)
Осуществляя преобразование Фурье левой и правой части выражения, получаем:
Rxy(n) = Rx(n) * h(n), (11.10)
что повторяет формулу (11.3).
Усиление шумов. Критерием качества при использовании любого метода фильтрации информации можно считать выполнение целевого назначения с минимальным усилением шумов (максимальным их подавлением). Обозначим через (k) аддитивный шум во входном сигнале с математическим ожиданием M{(k)}= 0 и дисперсией 2. Значения (k) статистически независимы. С учетом помехи во входном сигнале значение сигнала на выходе:
y(k) = n h(n)[x(k-n)+(k-n)].
Математическое ожидание значений выходного сигнала:
M{y(k)}= n h(n)[x(k-n)+M{(k-n)]}= n h(n)x(k-n).
Вычислим дисперсию распределения отсчетов выходного сигнала:
D{y(k)}= M{[n h(n)[x(k-n)+(k-n)]-M{y(k)}]2}=
= M{[n h(n) (k-n)]2}= n h2(n) M{2(k-n)}= 2 n h2(n). (11.11)
Отсюда следует, что сумма квадратов значений импульсного отклика цифрового фильтра представляет собой коэффициент усиления шумов, равномерно распределенных в главном частотном диапазоне фильтра, в процессе фильтрации сигнала. Это полностью соответствует прямому использованию выражения (11.7) при Wx(f) = 2:
y2 = 2 |H(f)|2 df ≡ 2 h2(n). (11.11')
Таким образом, коэффициент усиления фильтром дисперсии статистически распределенных шумов при расчете по импульсному отклику:
Kq = h2(n). (11.12)
По дискретной передаточной функции фильтра:
Kq = [1/(N+1)] n Hn2. (11.12')
Пример. Сглаживающий фильтр: y(k) = 0.2 x(k-n).
Коэффициент усиления шумов: 5 (0,22) = 0,2. Дисперсия шумов уменьшается в 1/0.2 = 5 раз.
Выполните расчет коэффициента усиления шумов для пятиточечного фильтра МНК.
Контрольный ответ: 0.486.
Функция когерентности входного и выходного сигналов фильтра оценивается по формуле:
xy2(f) = |Wxy(f)|2/[Wx(f)×Wy(f)]. (11.12)
Если функции Wx(f) и Wy(f) отличны от нуля и не содержат дельта-функций, то для всех частот f значения функции когерентности заключены в интервале:
0 £ xy2(f) £ 1.
Для исключения дельта-функции на нулевой частоте (постоянная составляющая сигнала) определение функции когерентности производится по центрированным сигналам. Для фильтров с постоянными параметрами функция когерентности равна 1, в чем нетрудно убедиться, если в формулу (11.12) подставить выражения Wxy и Wy, определенные через Wx. Для совершенно не связанных сигналов функция когерентности равна нулю. Промежуточные между 0 и 1 значения могут соответствовать трем ситуациям:
1. В сигналах (или в одном из них) присутствует внешний шум (например, шум квантования при ограничении по разрядности).
2. Фильтр не является строго линейным. Это может наблюдаться, например, при определенном ограничении по разрядности вычислений, при накоплении ошибки в рекурсивных системах и т.п.
3. Выходной сигнал y(t) помимо x(t) зависит еще от каких-то входных или внутренних системных процессов.
Величина 1-xy2(f) задает долю среднего квадрата сигнала y(t) на частоте f, не связанную с сигналом x(t).
Yandex.RTB R-A-252273-3
- 2.4.3 Ацп с плавающей точкой……………………………………………
- 1 Цифровые фильтры
- 1.1 Явление Гиббса
- 1.1.1 Сущность явления Гиббса
- 1.1.2 Параметры эффекта
- 1.1.3 Последствия для практики
- 1.2 Весовые функции
- 1.2.1 Нейтрализация явления Гиббса в частотной области
- 1.2.2 Основные весовые функции
- 1.3 Типы фильтров
- 1.4 Разностное уравнение
- Нерекурсивные фильтры
- 1.5.1 Методика расчетов нцф
- 1.5.2 Идеальные частотные фильтры
- 1.5.3 Конечные приближения идеальных фильтров
- 1.5.3.1 Применение весовых функций
- 1.5.3.2 Весовая функция Кайзера
- 1.5.4 Дифференцирующие цифровые фильтры
- 1.5.5 Гладкие частотные фильтры
- 1.6 Рекурсивные фильтры
- 6.3 Интегрирующий рекурсивный фильтр.
- 1.6.1 Принципы рекурсивной фильтрации
- 1.6.2 Режекторные и селекторные фильтры
- 1.6.2.1 Комплексная z-плоскость.
- 1.6.2.2 Режекторные фильтры
- 1.6.2.3 Селекторный фильтр
- 1.6.3 Билинейное z-преобразование
- 1.6.4 Типы рекурсивных частотных фильтров
- 1.7 Импульсная характеристика фильтров
- Передаточные функции фильтров
- 1.9 Частотные характеристики фильтров
- 1.10 Частотный анализ цифровых фильтров
- 1.10.1 Сглаживающие фильтры и фильтры аппроксимации
- 1.10.1.1 Фильтры мнк 1-го порядка (мнк-1)
- 1.10.1.2 Фильтры мнк 2-го порядка (мнк-2)
- 1.10.1.3 Фильтры мнк 4-го порядка
- 1.10.2 Разностные операторы
- 1.10.2.1 Разностный оператор
- 1.10.2.2 Восстановление данных
- 1.10.2.3 Аппроксимация производных
- 1.10.3 Интегрирование данных
- 1.10.4 Расчёт фильтров по частотной характеристике
- 1.11 Фильтрация случайных сигналов
- 1.12 Структурные схемы цифровых фильтров
- Обращенные формы.
- 1.13 Фильтры Чебышева
- 1.14 Фильтры Баттерворта
- Свойства фильтров Баттерворта нижних частот:
- 1.15 Фильтры Бесселя
- 2 Аналого-цифровое преобразование
- 2.1 Цифровая обработка звуковых сигналов
- 2.2 Основы аналого-цифрового преобразования
- 2.2.1 Основные понятия и определения
- 2.3 Структура и алгоритм работы цап
- Контрольные вопросы
- 2.4 Структура и алгоритм работы ацп
- 2.4.1 Параллельные ацп
- 2.4.2 Ацп с поразрядным уравновешиванием
- 2.4.3 Ацп с плавающей точкой
- Контрольные вопросы
- Глава 3. Звук.
- 3.1 Аудиосигнал
- 3.1.1 Звуковые волны
- 3.1.2 Звук как электрический сигнал
- 3.1.3 Фаза
- 3.1.4 Сложение синусоидальных волн
- 3.2 Звуковая система
- 3.2.1 Назначение звуковой системы
- 3.2.2 Модель звуковой системы
- 3.2.3 Входные датчики
- 3.2.4 Выходные датчики
- 3.2.5 Простейшая звуковая система
- 3.3 Амплитудно-частотная характеристика
- 3.3.1 Способы записи ачх в спецификации звуковых устройств
- 3.3.2 Октавные соотношения и измерения
- 3.3.3 Ачх реальных устройств воспроизведения звука
- 3.3.4 Диапазон частот голоса и инструментов
- 3.3.5 Влияние акустических факторов
- 3.4 Единицы измерения, параметры звуковых сигналов
- 3.4.1 Децибел
- 3.4.2 Относительная мощность электрических сигналов дБm
- 3.4.3 Децибелы и уровень звука
- 3.4.5 Громкость, уровень сигнала и коэффициент усиления
- 3.4.6 Громкость
- 3.5 Динамический диапазон
- 3.5.1 Запас динамического диапазона
- 3.5.2 Выбор динамического диапазона для реальной звуковой системы
- 3.6 Цифровой звук
- 3.6.1 Частота дискретизации
- 3.6.2 Разрядность
- 3.6.3 Дизеринг
- 3.6.4 Нойс шейпинг
- 3.6.5 Джиттер
- 3.7 Методы и стандарты передачи речи по трактам связи, применяемые в современном оборудовании (7 кГц)
- 3.7.1 Импульсно-кодовая модуляция (pcm — Pulse-Code Modulation)
- 3.7.3 Помехоустойчивость методов икм
- 3.7.4 Методы эффективного кодирования речи
- 3.7.5 Кодирование речи в стандарте cdma
- 3.7.6 Речевые кодеки для ip-телефонии
- 3.7.7 Оценка качества кодирования речи
- 3.8 Общие сведения по мр3
- 3.8.1 Феномен мрз
- 3.8.2 Что такое формат мрз?
- 3.8.3 Качество записи мрз
- 3.8.4 Формат мрз и музыкальные компакт-диски
- 3.8.5 Работа со звукозаписями формата мрз
- 3.9 Основные понятия цифровой звукозаписи
- 3.9.1 Натуральное цифровое представление данных
- 3.9.2 Кодирование рсм
- 3.9.3 Стандартный формат оцифровки звука
- 3.9.4 Параметры дискретизации
- 3.9.5 Качество компакт-диска
- 3.9.6 Объем звукозаписей
- 3.9.7 Формат wav
- 3.10 Формат mp3
- 3.10.1 Сжатие звуковых данных
- 3.10.2 Сжатие с потерей информации
- 3.10.3 Ориентация на человека
- 3.10.4 Кратко об истории и характеристиках стандартов mpeg.
- 3.10.5 Что такое cbr и vbr?
- 3.10.6 Каковы отличия режимов cbr, vbr и abr?
- 3.10.7 Методы оценки сложности сигнала
- 3.10.8 Какие методы кодирования стерео информации используются в алгоритмах mpeg (и других)?
- 3.10.9 Какие параметры предпочтительны при кодировании mp3?
- 3.10.10 Какие альтернативные mpeg-1 Layer III (mp3) алгоритмы компрессии существуют?
- 3.11 OggVorbis
- 3.13 Flac
- 4 Сжатие видео
- 4.1 Общие положения алгоритмов сжатия изображений
- 4.1.1 Классы изображений
- 4.1.2 Классы приложений
- 4.1.3 Требования приложений к алгоритмам компрессии
- 4.1.4 Критерии сравнения алгоритмов
- 4.2 Алгоритмы сжатия
- Gif (CompuServe Graphics Interchange Format)
- 4.3 Вейвлет-преобразования
- 4.3.1 Вейвлеты, вейвлет-преобразования, виды и свойства Вейвлет анализ и прямое вейвлет-преобразование
- Непрерывное прямое и обратное вейвлет-преобразования
- Ортогональные вейвлеты
- Дискретное вейвлет-преобразование непрерывных сигналов
- Кратномасштабный анализ
- Пакетные вейвлеты.
- 4.3.2 Примеры применения вейвлетов Очистка сигнала от шума
- Очистка сигнала от шумов на основе вейвлет-преобразований.
- 4.4 Формат сжатия изображений jpeg
- 2) Дискретизация
- 3) Сдвиг Уровня
- 4) 8X8 Дискретное Косинусоидальное Преобразование (dct)
- 5) Зигзагообразная перестановка 64 dct коэффициентов
- 6) Квантование
- 7) RunLength кодирование нулей (rlc)
- 8) Конечный шаг - кодирование Хаффмана
- 4.5 Jpeg2000
- 4.5.1 Общая характеристика стандарта и основные принципы сжатия
- 4.5.2 Информационные потери в jpeg2000 на разных этапах обработки
- 4.5.3 Практическая реализация
- 4.5.4 Специализированные конверторы и просмотрщики
- 4.5.5 Основные задачи для развития и усовершенствования стандарта jpeg2000
- 4.6 Видеостандарт mpeg
- 4.6.1 Общее описание
- 4.6.2 Предварительная обработка
- 4.6.3 Преобразование макроблоков I-изображений
- 4.6.4 Преобразование макроблоков р-изображений
- 4.6.5 Преобразование макроблоков в-изображений
- 4.6.6 Разделы макроблоков
- 4.7 Mpeg-1
- Параметры mpeg-1
- 4.8 Mpeg-2
- 4.8.1 Стандарт кодирования mpeg-2
- 4.8.2 Компрессия видеоданных
- 4.8.3 Кодируемые кадры
- 4.8.4 Компенсация движения
- 4.8.5 Дискретно-косинусное преобразование
- 4.8.6 Профессиональный профиль стандарта mpeg-2
- 4.9.11 Плюсы и минусы mpeg-4
- 4.10 Стандарт hdtv