4.9.11 Плюсы и минусы mpeg-4
Положительные стороны:
Технология позволяет снизить требуемую полосу пропускания в диапазоне, обеспечивая при этом доставку видео такого же качества или даже выше.
Развитие методов сжатия контента и удаления артефактов привело к появлению MPEG-4В течение недавнего времени отрасль вещания видео начала постепенный переход на новый формат MPEG-4 AVC (H.264).
Кодирование по стандарту AVC обеспечивает существенное снижение скорости потоков и выигрыш в эффективности компрессии 30…60% по сравнению с MPEG-2. Это позволяет достичь более высокой производительности в обработке видео, одновременно предоставляя возможность передавать в той же самой полосе частот большее число каналов. Таким образом, сеть на основе нового стандарта кодирования может работать с повышенным числом ТВЧ-каналов и расширенным набором разнообразных услуг.
Эффективное и оптимальное представление объектов означает не только достижение высокой степени компрессии, но и соответствие другим требованиям, например, помехозащищенность, произвольный доступ, простота редактирования и т. п.
Данные MPEG-4 могут упаковываться в пакеты транспортного потока MPEG-2, которые передаются в инфраструктуре сетей ТВ-вещания. Данные MPEG-4 могут также инкапсулироваться в пакеты протокола реального времени RTP.
Существует много различных приложений, в которых целесообразно и выгодно использовать объектно-ориентированные средства MPEG-4. Эти приложения: вещание, дистанционное наблюдение, персональные коммуникации, игры, мобильные мультимедийные системы связи, системы виртуальной реальности и т. п.
Стандарт позволяет создавать службы, объединяющие три различных модели обслуживания: вещание, оперативное взаимодействие в реальном времени, коммуникации.
Одна из наиболее действенных форм расширения возможностей телевидения — добавление сопутствующей информации в виде текста, таблиц, диаграмм, фотографий, двумерных или трехмерных графических образов, комментариев на разных языках. Сейчас такая информация, если она вводится, является неотъемлемой частью содержания программы. Она сначала включается в изображения, потом суммарное изображение кодируется и передается. Система MPEG-4 позволяет передавать эту информацию отдельно, предоставляя зрителю возможность выбора — смотреть или не смотреть, а если смотреть — то какую часть сопутствующей информации. Кроме того, дополнительная информация может кодироваться оптимальным образом (для каждого вида информации).
Зритель программы может приспосабливать воспроизведение дополнительной сопутствующей информации к своим вкусам и желаниям. К некоторым программам, например историческим, научным, или художественным, можно добавлять гораздо больше информации, которая будет появляться по желанию зрителя. Переходить между разными видами информации помогут гиперссылки. Дополнительная информация может передаваться по разным каналам и интегрироваться с основным содержанием программы в приемнике.
К новым, очень привлекательным возможностям относится выбор точки зрения камеры во время спортивных передач или музыкальных шоу. Можно выбирать каналы звука (например, голос комментатора, шум стадиона, крики игроков во время спортивных программ). В качестве фонового изображения может использоваться дополнительная информация о программе, фильме, субтитры на разных языках, комментарии на выбранном языке. Синтезированная в приемнике «говорящая голова» может обеспечить сурдоперевод для слабослышащих.
MPEG-4 ориентирован на конвергенцию, которая обусловлена проникновением аудиовизуальной информации во все службы и все типы сетей. Поэтому MPEG-4 — это не некоторый замкнутый и неделимый стандарт, а инструментарий, или комплекс инструментальных средств. Выбор наборов средств для конкретных приложений осуществляется в соответствии с выбранным профилем.
Интерактивность — одна из наиболее многообещающих функциональных возможностей MPEG-4. Она поддерживается объектно-ориентированным кодированием, управлением поведением объектов с помощью средств BIFS (Binary Format for Scenes – бинарный формат для сцен), гиперсвязей. Интерактивность обеспечивает трансляцию вещательных видеоигр, интерактивных викторин.
Отрицательные стороны:
В силу того, что оборудование MPEG-2 уже установлено по всему миру в огромном количестве, оно продолжает активно использоваться даже в условиях постепенного внедрения новейших схем кодирования AVC. Таким образом, возникает проблема поддержки одновременно нескольких форматов.
Наращивание выпуска обновленных абонентских приставок также требует кодирования одновременно в форматах MPEG-2 и AVC тем самым, поднимая и так немалую стоимость абонентских приставок, что существенно затрудняет внедрение цифрового ТВ. Однако если учесть темпы развития цифровых технологий и то, что переход на цифровое ТВ будет проходить несколько лет, то этот недостаток нивелируется в течении 2-3 лет.
Yandex.RTB R-A-252273-3
- 2.4.3 Ацп с плавающей точкой……………………………………………
- 1 Цифровые фильтры
- 1.1 Явление Гиббса
- 1.1.1 Сущность явления Гиббса
- 1.1.2 Параметры эффекта
- 1.1.3 Последствия для практики
- 1.2 Весовые функции
- 1.2.1 Нейтрализация явления Гиббса в частотной области
- 1.2.2 Основные весовые функции
- 1.3 Типы фильтров
- 1.4 Разностное уравнение
- Нерекурсивные фильтры
- 1.5.1 Методика расчетов нцф
- 1.5.2 Идеальные частотные фильтры
- 1.5.3 Конечные приближения идеальных фильтров
- 1.5.3.1 Применение весовых функций
- 1.5.3.2 Весовая функция Кайзера
- 1.5.4 Дифференцирующие цифровые фильтры
- 1.5.5 Гладкие частотные фильтры
- 1.6 Рекурсивные фильтры
- 6.3 Интегрирующий рекурсивный фильтр.
- 1.6.1 Принципы рекурсивной фильтрации
- 1.6.2 Режекторные и селекторные фильтры
- 1.6.2.1 Комплексная z-плоскость.
- 1.6.2.2 Режекторные фильтры
- 1.6.2.3 Селекторный фильтр
- 1.6.3 Билинейное z-преобразование
- 1.6.4 Типы рекурсивных частотных фильтров
- 1.7 Импульсная характеристика фильтров
- Передаточные функции фильтров
- 1.9 Частотные характеристики фильтров
- 1.10 Частотный анализ цифровых фильтров
- 1.10.1 Сглаживающие фильтры и фильтры аппроксимации
- 1.10.1.1 Фильтры мнк 1-го порядка (мнк-1)
- 1.10.1.2 Фильтры мнк 2-го порядка (мнк-2)
- 1.10.1.3 Фильтры мнк 4-го порядка
- 1.10.2 Разностные операторы
- 1.10.2.1 Разностный оператор
- 1.10.2.2 Восстановление данных
- 1.10.2.3 Аппроксимация производных
- 1.10.3 Интегрирование данных
- 1.10.4 Расчёт фильтров по частотной характеристике
- 1.11 Фильтрация случайных сигналов
- 1.12 Структурные схемы цифровых фильтров
- Обращенные формы.
- 1.13 Фильтры Чебышева
- 1.14 Фильтры Баттерворта
- Свойства фильтров Баттерворта нижних частот:
- 1.15 Фильтры Бесселя
- 2 Аналого-цифровое преобразование
- 2.1 Цифровая обработка звуковых сигналов
- 2.2 Основы аналого-цифрового преобразования
- 2.2.1 Основные понятия и определения
- 2.3 Структура и алгоритм работы цап
- Контрольные вопросы
- 2.4 Структура и алгоритм работы ацп
- 2.4.1 Параллельные ацп
- 2.4.2 Ацп с поразрядным уравновешиванием
- 2.4.3 Ацп с плавающей точкой
- Контрольные вопросы
- Глава 3. Звук.
- 3.1 Аудиосигнал
- 3.1.1 Звуковые волны
- 3.1.2 Звук как электрический сигнал
- 3.1.3 Фаза
- 3.1.4 Сложение синусоидальных волн
- 3.2 Звуковая система
- 3.2.1 Назначение звуковой системы
- 3.2.2 Модель звуковой системы
- 3.2.3 Входные датчики
- 3.2.4 Выходные датчики
- 3.2.5 Простейшая звуковая система
- 3.3 Амплитудно-частотная характеристика
- 3.3.1 Способы записи ачх в спецификации звуковых устройств
- 3.3.2 Октавные соотношения и измерения
- 3.3.3 Ачх реальных устройств воспроизведения звука
- 3.3.4 Диапазон частот голоса и инструментов
- 3.3.5 Влияние акустических факторов
- 3.4 Единицы измерения, параметры звуковых сигналов
- 3.4.1 Децибел
- 3.4.2 Относительная мощность электрических сигналов дБm
- 3.4.3 Децибелы и уровень звука
- 3.4.5 Громкость, уровень сигнала и коэффициент усиления
- 3.4.6 Громкость
- 3.5 Динамический диапазон
- 3.5.1 Запас динамического диапазона
- 3.5.2 Выбор динамического диапазона для реальной звуковой системы
- 3.6 Цифровой звук
- 3.6.1 Частота дискретизации
- 3.6.2 Разрядность
- 3.6.3 Дизеринг
- 3.6.4 Нойс шейпинг
- 3.6.5 Джиттер
- 3.7 Методы и стандарты передачи речи по трактам связи, применяемые в современном оборудовании (7 кГц)
- 3.7.1 Импульсно-кодовая модуляция (pcm — Pulse-Code Modulation)
- 3.7.3 Помехоустойчивость методов икм
- 3.7.4 Методы эффективного кодирования речи
- 3.7.5 Кодирование речи в стандарте cdma
- 3.7.6 Речевые кодеки для ip-телефонии
- 3.7.7 Оценка качества кодирования речи
- 3.8 Общие сведения по мр3
- 3.8.1 Феномен мрз
- 3.8.2 Что такое формат мрз?
- 3.8.3 Качество записи мрз
- 3.8.4 Формат мрз и музыкальные компакт-диски
- 3.8.5 Работа со звукозаписями формата мрз
- 3.9 Основные понятия цифровой звукозаписи
- 3.9.1 Натуральное цифровое представление данных
- 3.9.2 Кодирование рсм
- 3.9.3 Стандартный формат оцифровки звука
- 3.9.4 Параметры дискретизации
- 3.9.5 Качество компакт-диска
- 3.9.6 Объем звукозаписей
- 3.9.7 Формат wav
- 3.10 Формат mp3
- 3.10.1 Сжатие звуковых данных
- 3.10.2 Сжатие с потерей информации
- 3.10.3 Ориентация на человека
- 3.10.4 Кратко об истории и характеристиках стандартов mpeg.
- 3.10.5 Что такое cbr и vbr?
- 3.10.6 Каковы отличия режимов cbr, vbr и abr?
- 3.10.7 Методы оценки сложности сигнала
- 3.10.8 Какие методы кодирования стерео информации используются в алгоритмах mpeg (и других)?
- 3.10.9 Какие параметры предпочтительны при кодировании mp3?
- 3.10.10 Какие альтернативные mpeg-1 Layer III (mp3) алгоритмы компрессии существуют?
- 3.11 OggVorbis
- 3.13 Flac
- 4 Сжатие видео
- 4.1 Общие положения алгоритмов сжатия изображений
- 4.1.1 Классы изображений
- 4.1.2 Классы приложений
- 4.1.3 Требования приложений к алгоритмам компрессии
- 4.1.4 Критерии сравнения алгоритмов
- 4.2 Алгоритмы сжатия
- Gif (CompuServe Graphics Interchange Format)
- 4.3 Вейвлет-преобразования
- 4.3.1 Вейвлеты, вейвлет-преобразования, виды и свойства Вейвлет анализ и прямое вейвлет-преобразование
- Непрерывное прямое и обратное вейвлет-преобразования
- Ортогональные вейвлеты
- Дискретное вейвлет-преобразование непрерывных сигналов
- Кратномасштабный анализ
- Пакетные вейвлеты.
- 4.3.2 Примеры применения вейвлетов Очистка сигнала от шума
- Очистка сигнала от шумов на основе вейвлет-преобразований.
- 4.4 Формат сжатия изображений jpeg
- 2) Дискретизация
- 3) Сдвиг Уровня
- 4) 8X8 Дискретное Косинусоидальное Преобразование (dct)
- 5) Зигзагообразная перестановка 64 dct коэффициентов
- 6) Квантование
- 7) RunLength кодирование нулей (rlc)
- 8) Конечный шаг - кодирование Хаффмана
- 4.5 Jpeg2000
- 4.5.1 Общая характеристика стандарта и основные принципы сжатия
- 4.5.2 Информационные потери в jpeg2000 на разных этапах обработки
- 4.5.3 Практическая реализация
- 4.5.4 Специализированные конверторы и просмотрщики
- 4.5.5 Основные задачи для развития и усовершенствования стандарта jpeg2000
- 4.6 Видеостандарт mpeg
- 4.6.1 Общее описание
- 4.6.2 Предварительная обработка
- 4.6.3 Преобразование макроблоков I-изображений
- 4.6.4 Преобразование макроблоков р-изображений
- 4.6.5 Преобразование макроблоков в-изображений
- 4.6.6 Разделы макроблоков
- 4.7 Mpeg-1
- Параметры mpeg-1
- 4.8 Mpeg-2
- 4.8.1 Стандарт кодирования mpeg-2
- 4.8.2 Компрессия видеоданных
- 4.8.3 Кодируемые кадры
- 4.8.4 Компенсация движения
- 4.8.5 Дискретно-косинусное преобразование
- 4.8.6 Профессиональный профиль стандарта mpeg-2
- 4.9.11 Плюсы и минусы mpeg-4
- 4.10 Стандарт hdtv