logo search
Лекции по ЦО АВС

1.6.2.2 Режекторные фильтры

Режекторный фильтр постоянной составляющей сигнала. Сконст- руируем простейший РЦФ, добавив к оператору (6.2.1) один полюс вне единичной окружности на малом расстоянии от нуля:

Hп(z) = G(1-z)/(1-az), zp= 1/a. (6.2.2)

Допустим, что полюс помещен в точке zp1= 1.01, при этом, а=0,99. Масштабный коэффициент G получим нормировкой H(z) к 1 на частоте Найквиста. Для приведенных условий G=0.995. Отсюда, при t=1:

Hп(z) = 0,995(1-z)/(1-0.99z),

yk = 0.995(xk-xk-1)+ 0.99yk-1.

Рис. 6.2.3.

Отображение нуля n1 и полюса р1 на z-плоскости и АЧХ фильтра для исключения постоянной составляющей приведены на рис.6.2.1. Коэффициент передачи сигнала на произвольной частоте i равен отношению длин векторов Vn1(z) и Vp1(z) соответственно из нуля и полюса до точки z(i) на единичной окружности и близок к единице для всех частот, за исключением нулевой:

|Hп(z)| = G Vn1(z)/Vp1(z).

Фазочастотная характеристика фильтра приведена на рис. 6.2.3 и определяется разностью фазовых углов векторов Vn1(z) и Vp1(z):

п() = n1-p1.

Режекторный фильтр произвольной частоты. При проектировании на подавление любой другой частоты ωv нули и полюсы располагаются на соответствующем радиусе z-плоскости. Радиальный угол направления на нуль и полюс определяются выражением:

v = ·v/N. (6.2.3)

Наличие двух знаков в выражении (6.2.3) отражает тот факт, что для получения вещественной функции фильтра нули и полюсы должны быть комплексно-сопряженными парами (их произведение дает вещественную функцию), т.е.:

Hv(z) = G(z-zn)(z-zn*)/[(z-zp)(z-zp*)]. (6.2.4)

Нули фильтра располагаются на единичной окружности:

zn = cos v + j sin v = Re zn + j Im zn. (6.2.5)

Полюсы - на полярном радиусе R:

zp = R·cos v + j R·sin v = Re zp + j Im zp. (6.2.6)

Пример положения нулей (n2 и n2*) и полюсов (р2 и р2*) приведен на рис.6.2.1. Подставляя (6.2.5-6.2.6) в (6.2.4), получаем:

Hv(z) = , (6.2.7)

G = [1+(1+2Re zp)/R2] / (2+2Re zn). (6.2.8)

При приведении уравнения (6.2.7) в типовую форму:

Hv(z) = , (6.2.7')

b0 = 1, b1 = -2·Re zn, b2 = 1. (6.2.9)

a1 = - (2·Re zp)/R2, a2 = 1/R2.

Соответственно, алгоритм вычислений:

yk = G·(xk+b1·xk-1+xk-2) – a1·yk-1 – a2·yk-2. (6.2.10)

В качестве примера проведем расчет режекторного фильтра на сетевую частоту питания приборов fs = 50 Гц, которая очень часто попадает в измеренные данные. При шаге дискретизации данных t = 0.001 сек радиальный угол на нули и полюса фильтра в z-плоскости:

fN = 1/2t = 500 Гц, ·fs/fN = 0.1π.

Радиус полюса фильтра примем равным R = 1.01. Значения нуля и полюса:

zn = cos  + j sin  = 0.951 + 0.309 j,

zp = R·cos v + j R·sin v = 0.961 + 0.312 j.

Рис. 6.2.4.

Значение масштабного множителя G по (6.2.8):

G = 0.99.

Значения коэффициентов передаточной функции:

b1 = -2·Re zn = -1.902,

a1 = - (2·Re zp)/R2 = -1.883, a2 = 1/R2 = 0.98.

При подстановке коэффициентов в уравнение (6.2.7') и замене z = exp(-jω) может быть получена частотная передаточная функция фильтра, которая приведена на рис. 6.2.4:

Алгоритм фильтра:

yk = 0.99·(xk - 1.902·xk-1 + xk-2) + 1.883·yk-1 – 0.98·yk-2.

На рис. 6.2.5 приведен модельный входной сигнал фильтра, состоящий из суммы двух равных по амплитуде гармоник с частотой 50 и 53 Гц, и сигнал на выходе фильтра (смещен вверх). Справа на рисунке приведены спектры входного и выходного сигналов. Спектр выходного сигнала зарегистрирован после интервала установления реакции фильтра, который хорошо заметен на начальной части графика выходного сигнала. После установления сигнал на выходе фильтра практически полностью освобожден от гармоники 50 Гц.

Рис. 6.2.5.

Рис. 6.2.6.

При R → 1 ширина полосы подавления фильтра становится все более узкой, но при этом увеличивается длительность импульсной реакции фильтра и, соответственно, время установления фильтра при изменении спектра входного сигнала. В первом приближении значимая часть импульсной реакции режекторных фильтров равна (4÷5)/(R-1). Пример импульсной реакции для фильтра, вычисленного выше, приведен на рис. 6.2.6. Отклик фильтра получен при подаче на вход РЦФ импульса Кронекера. Для наглядности реакции на графике не показан начальный пик отклика (отсчет на нулевой точке), амплитуда которого равна значению G.