logo search
Економічна кібернетика

1. Модель міжгалузевого балансу та її характеристика

Основу інформаційного забезпечення моделі міжгалузевого балансу становить технологічна матриця, що містить коефіцієнти прямих матеріальних витрат на виробництво одиниці продукції. Ця матриця є базою економіко-математичної моделі міжгалузевого балансу.

Припускається гіпотеза, згідно з якою для виробництва одиниці продукції в j-й галузі необхідна певна кількість витрат проміжної продукції і-ї галузі, що становить aij, і ця величина не залежить від обсягів виробництва в j-й галузі та є досить стабіль­ною величиною в часі. Величини aij називають коефіцієнтами прямих матеріальних витрат та обчислюють таким чином:

(11.4)

Коефіцієнти прямих матеріальних витрат показують, яку кількість продукції і-ї галузі необхідно витратити, якщо враховувати лише прямі витрати, для виробництва одиниці продукції j-ї галузі. З урахуванням формули (11.4) систему рівнянь балансу (11.2) можна записати у вигляді

Якщо ввести до розгляду матрицю коефіцієнтів прямих матеріальних витрат А = (аij), вектор-стовпчик валової продукції X та вектор-стовпчик кінцевої продукції Y:

то система рівнянь (11.5) у матричній формі матиме вигляд

X = AX + Y . (11.6)

Систему рівнянь (11.5), чи у матричній формі (11.6), називають економіко-математичною моделлю міжгалузевого балансу (моделлю Леонтьєва, моделлю «витрати — випуск»). За допомогою цієї моделі можна виконати три варіанти обчислень:

Y = (E – A)X, (11.7)

де Е — одинична матриця n-го порядку;

X = (E – A)–1Y; (11.8)