logo
Економічна кібернетика

2. Постановка задачі опуклого програмування та її застосування в економіці

Опукле програмування розглядає методи розв’язування задач нелінійного програмування, математичні моделі яких містять опуклі або угнуті функції.

Загальний вигляд задачі опуклого програмування такий:

, (8.31)

, ; (8.32)

, (8.33)

де , — угнуті функції.

Аналогічний вигляд має задача для опуклих функцій.

Позначимо: , тоді , і маємо:

, (8.34)

; (8.35)

, (8.36)

де , — опуклі функції.

Оскільки ці задачі еквівалентні, то нижче розглянемо задачу (8.31)—(8.33).

Множина допустимих планів задачі, що визначається системою (8.32), є опуклою.

Як наслідок теорем 8.2 та 8.3 справджується таке твердження: точка локального максимуму (мінімуму) задачі опуклого програмування (8.31)—(8.33) є одночасно її глобальним максимумом (мінімумом).

Отже, якщо визначено точку локального екстремуму задачі опуклого програмування, то це означає, що знайдено точку глобального максимуму (мінімуму).

У разі обмежень-нерівностей задачу опуклого програмування розв’язують, застосовуючи метод множників Лагранжа.

Функція Лагранжа для задачі (8.31)—(8.33) має вид:

(8.37)

де — множники Лагранжа.