А.2. Некоторые элементы ракетной техники
Для всех двигателей общей характеристикой является удельный расход топлива, который определяется весом топлива в килограммах, расходуемого за час времени для получения килограмма тяги.
Если пойти дальше и рассматривать количество топлива, расходуемого в секунду, что более соответствует быстрому расходу топлива в ракетном двигателе, мы подойдем в конечном итоге к понятию «удельный импульс» («удельная тяга»). Расход топлива и достигнутая тяга имеют общую единицу измерения - килограмм, а удельный импульс топлива, представляющий их отношение, соответственно по сокращении общей единицы измерения будет иметь размерность в секундах. Например, удельная тяга, равная 300 сек, в полной форме выражается, как 300 кг/сек/кг (т. е. 300 кг на срезе сопла тяги от каждого килограмма топлива за секунду горения).
Отсюда становится ясно, что хотя удельная тяга измеряется секундами, она не имеет ничего общего с временем горения. Время горения определяется общим количеством имеющегося на борту ракеты и сгоревшего топлива. Например, если за одну секунду сгорает 225 кг топлива, а удельный импульс топлива составляет 300 сек, то двигатель в каждый момент времени горения развивает тягу 6750 кг. Если запас топлива составляет 30 т, время горения равно 2 мин. Таким образом, в связи с большим расходом топлива во время горения масса ракеты быстро изменяется. Эта убывающая масса ракеты разгоняется за время горения топлива под воздействием постоянной тяги, равной 6750 кг. Соответственно ускорение ракеты будет нарастать не постоянно. Максимальная скорость ракеты, достигаемая в момент выгорания топлива, пропорциональна постоянной тяге двигателей и соответственно пропорциональна удельному импульсу топлива. Если использовать более высококалорийное топливо, удельный импульс которого будет не 300, а 400 сек, то при прочих равных условиях скорость в момент выгорания топлива будет на 1/3 большей. По этой причине основной удельный импульс можно считать показателем, характеризующим основные свойства ракеты.
Есть и другая причина считать удельный импульс основной характеристикой ракеты. Если необходимая скорость достигается в момент выгорания топлива, то простым увеличением удельной тяги можно соответственно уменьшить общий вес ракеты за счет запаса топлива, а следовательно, увеличить полезную нагрузку. Эта зависимость показана на рис. А.1.
В настоящее время ракетная техника располагает химическими топливами, удельный импульс которых, по всей Вероятности, не превышает 300 сек. Следовательно, в соответствии с рис. А.1, более 80% общего веса современных ракет составляет топливо. Термодинамический предел удельного импульса для химических топлив равен 400 сек и достигается при применении в качестве горючего жидкого водорода; для достижения более высокого удельного импульса необходимо применять двигательные установки иного типа. Ядерная двигательная установка может реализовать удельный импульс от 500 до 1500 сек; ионные реактивные двигатели будущего с очень высокой скоростью истечения частиц очень малой массы способны развить удельный импульс от 2000 до 10 000 сек.
. В области двигательных установок, очевидно, необходимо создание высокоэнергетических электроядерных двигателей мегаваттпой мощности. Такая возможность представляется только в далеком будущем. В настоящее время для получения мегаваттной мощности вес установки должен составлять более 10 т.
Предшествующие расчеты касались одноступенчатых ракет. Во многоступенчатых ракетах первые более мощные ступени отделяются после выполнения полезных функций, так как в противном случае их лишний вес будет мешать дальнейшему приращению скорости. Идеальный пример непрерывного ступенчатого принципа работы являет горящая сигарета при условии постоянного удаления пепла. На практике непрерывное отделение израсходованных ступеней потребует, согласованно с расходом топлива уменьшать вес конструкции самих двигателей и топливных баков, но это пока невозможно. В качестве примера значения рассмотрим приведенную ниже таблицу. Из нее следует, что отношение стартового веса ракеты к конечному весу полезной нагрузки уменьшается по мере увеличения числа ступеней при удельной тяге, равной 300 сек, и скорости в момент выгорания топлива, равной второй космической.
Из таблицы видно, что, как только число ступеней превышает четыре, выигрыш будет незначительным, но даже эти незначительные преимущества на практике не реализуются в связи с увеличением веса механизмов разделения ступеней.
Само собой разумеется, что ракеты больших размеров имеют определенные преимущества. Вес некоторых их компонентов (оборудование управления) не зависит от числа ступеней ракеты. Объем топливных баков пропорционален кубу линейных размеров, а их площадь и, следовательно, вес - квадрату линейных размеров.
Может показаться, что существуют другие потенциальные возможности усовершенствования конструкции ракет. В современных ракетах вес топлива примерно в девять раз больше веса конструкции ракеты (без полезной нагрузки). Предположим, что это соотношение можно увеличить до девятнадцати, используя более прочные и более легкие конструкции корпусов, двигателей и топливных баков. Получаемый при этом выигрыш будет эквивалентен увеличению удельного импульса топлива всего на 10% (с 300 до 330 сек). Очевидно, этим наиболее перспективным направлением исследований и разработок в этой области будет повышение мощности двигателей за счет увеличения удельных импульсов топлив.
- Анализ сложных систем
- Предисловие
- Выражение признательности
- 1. Введение
- 2. Анализ и принятие решений в военно-воздушных силах
- 2.1. Использование анализа при подготовке решений по структуре сил и разработке вооружения
- 2.2. Увеличение количества переменных величин
- 2.3. Подробное рассмотрение неопределенностей
- 2.4. Противник
- 2.5. Учет фактора времени
- 2.6. Расширение критериев
- 2.7. Заключение
- 3. Выбор и использование стратегических авиационных баз
- 3.1. Введение
- 3.2. Постановка задачи
- 3.3. Исходные положения
- 3.4. Альтернативы
- 3.5. Решающие факторы
- 3.6. План проведения анализа
- 3.7. Расстояние от базы до цели. Издержки, связанные с увеличением радиуса полета
- 3.8. Расстояние от базы до пунктов входа в зону обороны противника. Стоимость преодоления обороны
- 3.9. Расстояние от базы до континентальной части сша. Издержки на проведение операций за пределами сша
- 3.10 Влияние расстояния от базы до границы противника на издержки, связанные с уязвимостью базы
- 3,12 Неопределенность в оценке возможностей противника
- 3.14. Кампании при постоянной величине расходов
- 3.15. Гибкость системы и время кампании
- 3.16. Операции с заокеанских баз после проведения кампании против авиации противника
- 3.17. Ограничения эффективности систем и их гибкость
- 3.18. Заключение
- Элементы и методы
- 4. Зачем и каким образом создается модель
- 4.1. Выявление релевантных факторов
- 4.2. Выбор факторов, описываемых количественно
- 4.3. Объединение в группы описываемых количественно факторов
- 4.4. Установление количественных соотношений между элементами
- 4.5. Создание модели и реальный мир
- 4.6. Суждения человека
- 4.7. Модель, использующая вычислительную машину
- 4.8. Заключение
- 5. Критерии
- 5.1. Неизбежность приближенных критериев
- 5.2. Субоптимизация и критерии
- 5.3. Некоторые распространенные ошибки при выборе критериев
- 5.4. Что можно сделать?
- 6. Значение затрат39
- 6.1. Заданный объем ресурсов при единственной цели
- 6.2. Заданный объем ресурсов при нескольких целях
- 6.3. Переменный объем затрат ресурсов
- 6.4. Некоторые частные аспекты проблемы
- 7. Анализ и построение конфликтных систем44
- 7.1. Анализ систем в сравнении с моделями и проблемы, побуждающие к анализу
- 7.2. Пример из деятельности ввс - история межконтинентальных боевых действий
- 7.3. Цели и ограничения системных исследований
- 7.4. Более широкие задачи: параллельные и отдаленные цели
- 7.5. Происхождение и изменение целей
- 7.6. Сдерживание: пример с межконтинентальными полетами
- 7.7. Ведение войны
- 7.8. Противодействие и содействие противника
- 7.9. Малая ценность взаимно неудовлетворительных стратегий
- 7.10. Неопределенность и определение диапазона достижимых целей
- 7.11. Проектирование систем в сравнении с анализом систем
- 8. Методы и процедуры
- 8.1. Введение
- 8.2. Инженерное искусство
- 8.3. Методологические вопросы анализа систем
- Часть 3 специальные вопросы
- 9. Фактор техники
- 9.1. Введение
- 9.2. Технические характеристики
- 9.3. Параметры уровня развития техники
- 9.4. Законы масштабности
- 9.5. Оптимум и ограничения
- 9.6. Фактор надежности
- 10. Предположения о поведении противника
- 10.1. Введение
- 10.2. Пример проблемы выбора системы оружия из нескольких ее вариантов
- 10.3 - Выгодность четырех возможных результатов
- 10.3. Более широкое истолкование. Всесторонняя стратегия
- 10.4. Заключение
- 11. Методы теории игр и их применение
- 11.1. Использование военных игр
- 11.2. Методика военных игр
- 11.3. Этапы проведения военной игры
- 12. Стратегия разработок
- 12.1. Насколько велика неопределенность?
- 12,2. Что следует сделать для уменьшения неопределенности?
- 12.3. Каковы затраты на уменьшение неопределенности?
- 12.4. Какова степень уменьшения неопределенности продолжения разработки?
- 13. Математика и анализ систем
- 13.1. Линейное программирование
- 13.2. Метод Монте-Карло
- 13.3. Теория игр
- 13.4. Электронно-вычислительные машины
- 13.5. Роль математики
- 14. Применение электронно-вычислительных машин
- 14.1. Преимущества вычислительных машин
- 14.2. Недостатки вычислительных машин
- 14.3. Программирование модели
- 14.4. Постановка задачи
- 14.5. Несогласованность языков программирования
- 14.6. Заключение
- 15.1. Введение
- 15.2. Анализ стоимости отдельных систем
- 15.3. Анализ стоимости структуры вида сил
- 15.4. Анализ чувствительности модели стоимости
- 15.5. Представление результатов анализа
- 15.6. Заключение
- 16. Опасности анализа систем
- 16.1. Постановка задачи
- 16.2. Поиск
- 16.3. Толкование
- 16.4. Рекомендация
- 17. Повторение пройденного
- 17.1. Правила
- 17.2. Вопросы
- 17.3. Ретроспективный взгляд
- Введение в проблему создания лунной базы
- А.1. Базы на Луне - доводы за и против
- А.2. Некоторые элементы ракетной техники
- А.3. Варианты систем
- А.4. Модель системы прямого полета
- Сравнение ракетных систем
- Б.1. Введение
- Б.2. Пример
- Б.З. Сравнение ракет
- В.4. Заключение