logo
Гольдштейн_учебники / Телекоммуникационные системы и сети - КНИГА

2.5. Демодуляция сигналов

До сих пор мы рассматривали преобразования сигнала в пункте передачи. В пункте приема (см. рис. 2.1) необходимо извлечь первич­ный сигнал из переносчика, т.е. осуществить демодуляцию принятого сигнала.

Например, при демодуляции АМ-сигнала необходимо выделить закон изменения амплитуды модулированного несущего сигнала, т.е. его огибающую. Эта операция выполняется с помощью амплитудного детектора (рис. 2.11). При линейном детектировании на вход детекто­ра с линейной вольт-амперной характеристикой (рис. 2.12, а) подает­ся АМ-сигнал (см. рис. 2.12, б), и последовательность импульсов тока детектора оказывается промодулированной по амплитуде (см. рис. 2.12, в). Высокочастотные составляющие тока отфильтровыва ются RC-цепью; падение напряжения на резисторе R создает только постоянная составляющая тока.

Рис. 2.11. Амплитудные детекторы: транзисторный (а), диодный (б)

В модулированном колебании амплитуда медленно меняется по закону

V(t) = V(1 + MAMcosΩt),

следовательно, амплитуда выделяемой на резисторе R постоянной составляющей тока также будет медленно меняться во времени. Та­ким образом, выходное напряжение амплитудного детектора пропор­ционально исходному (модулирующему) сигналу.

Один из способов демодуляции ЧМ-колебаний состоит в превра­щении его в АМ-колебания и последующем детектировании с помо­щью амплитудного детектора.

Рис. 2.12. Детектирование АМ-сигнала

Преобразования ЧМ-сигнала в АМ-сигнал выполняется с помощью троенного колебательного контура. Предположим, что на колебательный контур, настроенный на определенную резонансную частоту, подаются ЧМ-колебания с постоянной амплитудой и меняющейся со временем частотой ω(t) = ω + ΔωcosΩt.

Полное сопротивление контура при каждой мгновенной частоте принимает свое определенное значение, так что амплитуда напряже­ния, выделяемого на контуре, будет изменяться во времени с изме-нпнием частоты входного ЧМ-сигнала. Это положение иллюстрирует­ся рис. 2.13, где показана частотная зависимость амплитуды напряжения на контуре VK (ω) при постоянной амплитуде входного сигнала, илменение во времени частоты ω(t) входного ЧМ-сигнала и измене­ние во времени амплитуды VK(t) ЧМ-колебания.

Таким образом, амплитуда ЧМ-колебания на выходе колебатель­ною контура изменяется во времени пропорционально модулирую­щему сигналу, т.е. частотно модулированный сигнал стал модулиро-иинным и по амплитуде. Для получения низкочастотного сигнала дос-таточно подать модулированный по амплитуде ЧМ-сигнал на амплитудный детектор.

Аналогичным образом выделение закона изменения фазы ФМ-сигнала осуществляется фазовым детектором.

Существуют и способы демодуляции импульсно-демодулированного сигнала. Все устройства, предназначенные для демодуляции сигналов, будут рассмотрены дальше при изучении конкретных систем передачи и аппаратуры, входящей в состав этих систем.

Рис. 2.13. Демодуляция ЧМ-сигнала

Контрольные вопросы

1. Какова структура устройства передачи сообщений?

2. В чем состоит принцип амплитудной (частотной, фазовой) модуляции?

3. Чем отличается непрерывная модуляция от импульсной?

4. Как осуществляется восстановление исходного сигнала из модулирован­ного?

Список литературы

1. Системы электросвязи: Учебник для вузов / Под ред. В.П.Шувалова. - М.: Радио и связь, 1987.-512с.

2. Баскаков С.И. Радиотехнические цепи и сигналы: Учебник. - 3-е изд., перераб. и доп. - М.: Высш. шк., 2000. - 462 с.