1.3. Сигналы электросвязи и их спектры
Рассмотрим наиболее часто встречающиеся сигналы электросвязи и обсудим их спектры.
Телефонные (речевые) сигналы. Человек набрал в легкие воздух и издал звук. Что же произошло? Воздух, выходя из легких, заставляет вибрировать голосовые связки. От них колебания воздуха передаются через гортань голосовому аппарату, заканчивающемуся ротовой и носовой полостями (рис. 1.9).
Последние выполняют роль резонаторов - они усиливают колебания воздуха, подобно тому, как полый корпус гитары или скрипки, также являясь резонатором, усиливает звуки струн. Колебания воздуха из голосового аппарата человека передаются окружающему воздуху. Возникает звуковая волна. Характер издаваемого звука определяется натяжением голосовых связок, формой ротовой полости, положением языка, губ и т.д.
Из описания голосового аппарата человека нетрудно понять, что голосовые связки играют роль своеобразных струн, они создают основной тон и обильное количество обертонов. Частота основного тона речи лежит в пределах от 50...80 Гц (очень низкий голос - бас) до 200...250 Гц (женский и детский голоса). При разговоре частота основного тона меняется в значительных пределах, особенно при переходе от гласных звуков к согласным, и наоборот.
В совместном звучании основной тон и обертоны создают соответствующую окраску звука или тембр. Один тембр отличается от другого числом и силой обертонов. При преобладании в человеческом голосе высоких обертонов над низкими мы слышим в нем «звучание металла». Люди, у которых в голосе преобладают низкие обертоны, говорят мягким, бархатным голосом.
Рис. 1.9. Кривая звукового давления при произнесении звука «а» мужским голосом
Для получения формы кривой звукового давления, создаваемого речью человека, нужно сложить синусоидальные кривые основного тона и обертонов. Из-за наличия большого числа обертонов форма результирующей кривой будет сложной. На рис. 1.9 показано, какое давление создает звук «а», произнесенный мужским голосом с частотой основного тона 200 Гц (период основного тона 5 мс). Для передачи звука на расстояние он в телефонном аппарате превращается в сигнал. Для этой цели служит микрофон.
Телефон был изобретен А.Г. Беллом, учителем в школе глухонемых в американском городе Бостоне в 1876 г. С тех пор в его конструкцию было внесено много усовершенствований. В частности, в современном телефоне используется чувствительный угольный микрофон (рис. 1.10). В нем мембрана соприкасается с угольным порошком. Пока в микрофон не говорят, сопротивление порошка остается неизменным и через него от батареи в линию (провода) протекает постоянный ток. Стоит произнести в микрофон какое-нибудь слово, порошок под действием колеблющейся мембраны будет то спрессовываться, то разрыхляться. Изменение плотности порошка приводит к изменению его электрического сопротивления, а значит, и к изменению тока, текущего через порошок. В проводах, идущих от микрофона, рождается электрический ток, повторяющий форму звукового давления.
Изучение речи показывает, что речь - это процесс, частотный спектр которого находится в пределах от 50...100 до 8000...10000 Гц. Установлено, однако, что качество речи остается вполне удовлетворительным, если ограничить спектр снизу и сверху частотами 300 и 3400 Гц.
Рис. 1.10. Превращение звука в электрический сигнал с помощью микрофона
Рис. 1.11. Спектр человеческой речи
Эти частоты приняты Международным союзом электросвязи (МСЭ) в качестве границ эффективного спектра речи. При указанной полосе частот сохраняется хорошая разборчивость речи и удовлетворительная натуральность ее звучания.
На рис. 1.11 показан спектр речи. Как видно из рисунка, некоторые частотные составляющие речи усилены, а другие ослаблены. Усиленные области спектра частот называются формантами. Звуки речи различных людей отличаются числом формант и их расположением в частотном спектре. Отдельные звуки могут иметь до шести формант, из которых только одна или две являются определяющими. Они обязательно находятся в диапазоне частот 300...3400 Гц. Между формантами лежат менее мощные составляющие звуковых частот. Однако именно они придают голосу каждого человека индивидуальность, позволяющую узнавать говорящего.
Сигналы звукового вещания. Источниками звука при передаче программ вещания обычно являются музыкальные инструменты или голос человека. Формирование сигналов звукового вещания и их прием осуществляется так же, как и телефонных сигналов. Используются лишь другие типы микрофонов.
Спектр звукового сигнала занимает полосу частот 20...20 000 Гц. Однако в зависимости от требований к качеству воспроизведения ширина спектра сигнала вещания может быть ограничена. Для достаточно высокого качества (каналы вещания первого класса) полоса частот должна составлять 50...10 000 Гц, для безукоризненного воспроизведения программ вещания (каналы высшего класса) -30...15000ГЦ.
Факсимильные сигналы. Обратите внимание на то, как вы читаете книгу. Ваши глаза скользят по строке слева направо, затем вы переходите к началу другой строки и т.д. до конца страницы. Словом вы «просматриваете» все элементы строки последовательно. Можно сказать, что при чтении книги происходит построчная развертка текстового изображения.
Именно по такому принципу «просматривается» изображение в современных факсимильных аппаратах, предназначенных для передачи на расстоянии различного рода неподвижных изображений (документов, чертежей, рисунков, фотографий). Для этого с помощью источника света и системы оптических линз формируют световое пятно так, чтобы освещать на передаваемом изображении площадку размером, скажем, 0,2x0,2 мм. Это световое пятно перемещается сначала вдоль одной строки, затем переходит на другую и движется по ней - и так до конца последней строки. Свет, отражаясь от каждой элементарной площадки, попадает на фотоэлемент и вызывает в его цепи ток (рис. 1.12). Значение этого тока зависит от яркости отраженного света, а последняя - от яркости освещенной площадки. Таким образом, при переходе светового пятна на изображении от одной элементарной площадки к другой ток в цепи фотоэлемента меняется пропорционально яркости площадок: мы получаем точную электрическую копию изображения.
Рассмотрим изображение, состоящее только из двух цветов: черного и белого, например, страницу книги, какой-либо чертеж и т.п. Очевидно, каждый элемент изображения (напомним, что размером он всего 0,2x0,2 мм) будет представлять собой либо черную, либо белую площадку, напоминая чередованием шахматную доску. Черные площадки практически полностью поглощают падающий на них свет. Яркость отраженного ими света при этом настолько ничтожна, что при просмотре черных площадок ток в цепи фотоэлемента не возникает. Наоборот, площадки белого цвета почти полностью отражают падающий на них свет, и при попадании на них светового луча ток в цепи фотоэлемента скачком принимает максимальное значение. Таким образом, перемещая световое пятно, а вслед за ним и фотоэлемент вдоль каждой строки изображения, получаем на выходе фотоэлемента последовательность импульсов (рис. 1.12).
При таком «шахматном» чередовании элементов изображения спектр факсимильного сигнала будет шире, чем для любого другого изображения, поскольку круче фронтов импульсов, чем у прямоугольных, не бывает.
Рис. 1.12. Преобразование изображения в электрический сигнал в факсимильном аппарате
Ширина спектра факсимильного сигнала зависит от скорости развертки изображения и размеров светового пятна.
На стандартном листе бумаги формата А4 в строке помещается примерно 1000 черно-белых элементов изображения при ширине пятна 0,2 мм. Если в факсимильном аппарате скорость развертки составляет 60 строк/мин, т.е. каждая строка считывается за 1 с, то за эту секунду 500 раз будет осуществлен переход с черного на белое, или наоборот. Это означает, что максимальная частота чередования импульсов равна 500 Гц. При ширине светового пятна 0,1 мм в строке будет в 2 раза больше элементов изображения, и максимальная частота чередования импульсов повысится до 1000Гц. Так как для сохранения хорошей степени «прямоу-гольности» импульсов нужно передавать кроме основной гармоники еще и несколько высших, то ширина спектра факсимильного сигнала может простираться до 1,5...3,0 кГц.
При увеличении скорости развертки изображения черные и белые площадки будут считываться чаще и, следовательно, спектр факсимильного сигнала будет шире. При передаче изображений с полутонами получается сигнал сложной формы, спектр которого является непрерывным и соединяет все частоты от нуля до максимальной.
Факсимильная связь широко используется для передачи газетных полос (т.е. их изображений) в пункты централизованного печатания. Для передачи газет используют специальные высокоскоростные факсимильные аппараты с шириной светового пятна 0,05 мм. Повышенная скорость развертки позволяет передавать одну газетную полосу за 2-3 мин. Это приводит к расширению спектра факсимильного сигнала до 180 кГц.
Телевизионные сигналы. Любое подвижное изображение - это, как правило, смена через каждые 40 мс одного неподвижного изображения другим (25 кадров в 1 с). За время между сменой кадров нужно успеть просмотреть все неподвижное изображение, которое содержит полмиллиона элементарных площадок или элементов изображения (625 строк по 833 элемента в строке). Значит, каждый элемент изображения придется рассматривать в течение одной полумиллионной доли от отведенных на весь кадр 40 мс. Это непостижимо короткий отрезок времени - всего две десятимиллиардных доли секунды! Ясно, что ни одно механическое устройство не способно перемещать световое пятно и фотоэлемент по строкам изображения с такой скоростью.
Вы никогда не задумывались над тем, что вы видите на экране телевизора, когда усаживаетесь перед ним в свободный вечер? Изображение? Нет, в действительности на экране никакого изображения нет, абсолютно никакого! Если бы мы сумели открыть глаза на какую-то ничтожную долю секунды (а речь идет о миллионных и даже миллиардных долях), то увидели бы на экране всего одну светящуюся точку. Это она бежит с невероятной скоростью по экрану, оставляя в нашем глазу след (мы видим то, чего уже нет, еще в течение 0,1 с), изменяющийся по яркости.
Что же заставляет светящуюся точку перемещаться с такой головокружительной быстротой? Электронный луч. Это он способен почти мгновенно отклоняться под действием изменяющегося магнитного поля и развертывать «картинки». Это его можно очень точно сфокусировать с помощью специальных электрических «линз». Первые опыты с электронным лучом начались в самом начале XX в. Еще в 1907 г. профессор Петербургского технологического института Б.Л. Розинг сконструировал первую электронно-лучевую трубку и получил на ней изображение, правда, невысокого качества. Изобретение в начале 30-х годов прошлого столетия первых качественных передающих трубок связано с именами советских ученых, пионеров отечественного телевидения С.И. Катаева и П.И. Шмакова.
Как бы не отличались конструкции передающих телевизионных трубок разных лет, все они в чем-то имитируют глаз. Роль хрусталика выполняет объектив, роль зрачка - диафрагма. Имеется в трубке и своя «сетчатка» - пластинка, напоминающая пчелиные соты, в ячейках которых располагаются микроскопические фотоэлементы. Конечно, их намного меньше, чем фоторецепторов в глазу: всего около 0,5 млн. Изображение, которое нужно превратить в серию электрических импульсов, проектируется с помощью объектива на эту искусственную «сетчатку». Каждый микроскопический фотоэлемент (представляющий собой капельку светочувствительного серебряно-цезиевого сплава) получает свою порцию света и, если его подключить к внешней цепи, создаст ток, пропорциональный освещенности. Что касается электронного луча, то он как раз и подключает поочередно каждый из 500 000 фотоэлементов к внешней цепи трубки, причем отводится ему на это всего 40 мс, пока не сменится кадр. Таким образом, на одном элементе изображения луч «задерживается» не более 80 миллиардных долей секунды (т.е. 80 не). Величина тока во внешней цепи трубки отражает в каждый момент времени яркость соответствующего элемента изображения, спроектированного объективом на «сетчатку» передающей трубки, и является точной электронной копией передаваемого изображения.
Подсчитаем ширину спектра телевизионного сигнала. Пусть и на этот раз чередуются черные и белые площадки (элементы). Всего таких элементов будет 625 строк х 833 элемента = 520 625. В секунду меняется 25 кадров, т.е. 25 х 520 625 = 133 015 625 элементов. Значит, переход с черного на белое, или наоборот, происходит примерно 6 500 000 раз в 1 с. Максимальная частота повторения импульсов равна 6,5 мГц, что и принято за верхнюю границу ширины спектра телевизионного сигнала. Нижней границей считают 50 Гц (нижняя граница сигнала звукового сопровождения).
Во время смены строк и кадров развертывающий луч приемной трубки должен быть погашен. Кроме того, необходимо синхронизировать лучи приемной и передающей трубок. Таким образом, кроме сигнала изображения необходимо передавать вспомогательные управляющие импульсы (гасящие и синхронизирующие). Электрический сигнал, включающий в себя сигнал изображения и управляющие импульсы, называется полным телевизионным сигналом.
В системах цветного телевидения передаваемое изображение расчленяется с помощью светофильтров на три одноцветных изображения - красное, зеленое и синее. Красные, зеленые и синие лучи попадают каждый на свою телевизионную трубку. В приемном устройстве путем сложения трех одноцветных изображений воспроизводится передаваемое цветное изображение.
Таким образом, спектр телевизионного сигнала простирается от 50 Гц до 6,5 мГц.
Телеграфные сигналы и сигналы передачи данных. Все рассматриваемые до сих пор сообщения и сигналы являются непрерывными. Сообщения и сигналы телеграфии и передачи данных относятся к дискретным.
Устройства преобразования телеграфных сообщений и данных в электрический сигнал представляют каждый знак сообщения (букву, цифру) в виде определенной комбинации импульсов и пауз одинаковой длительности. Импульс соответствует наличию тока на выходе устройства преобразования (например, телеграфного аппарата), пауза - отсутствию тока.
В телеграфии таблица, которая ставит в соответствие буквам, цифрам и другим знакам комбинации импульсов и пауз, называется телеграфным кодом. Если обозначить импульс через 1, а паузу через 0 и воспользоваться международным телеграфным кодом МТК-2, то можно, например, знак А записать в виде 11000, знак В - в виде 10011 и т.д.
Для передачи данных используют более сложные коды, которые позволяют обнаруживать и исправлять ошибки в принятой комбинации импульсов, возникающие от действия помех.
Устройства преобразования сигналов телеграфии и передачи данных в сообщения по принятым комбинациям импульсов и пауз восстанавливают в соответствии с таблицей кода знаки сообщения (буквы, цифры и др.) и выдают их на печатающее устройство либо на экран дисплея.
Заметим, что чем меньше длительность импульсов, отображающих сообщения, тем больше их будет передано в единицу времени. Величина, обратная длительности импульса, называется скоростью телеграфирования: , где - длительность импульса, с.
В честь французского инженера Ж. Бодо единицу скорости телеграфирования назвали бодом. При длительности импульса = 1 с скорость В = 1 Бод. В телеграфии используются импульсы длительностью 0,02 с, что соответствует стандартной скорости телеграфирования 50 Бод. Применяются и другие скорости телеграфирования (например, 75 Бод). Скорости передачи данных существенно выше. Существует аппаратура передачи данных со скоростями 200, 600, 1200 Бод и более.
Сигналы телеграфии и передачи данных обычно имеют вид последовательностей прямоугольных импульсов.
Посмотрите внимательно на рис. 1.14. Можно представить (разумеется, чисто условно) поток импульсов в виде суммы двух последовательностей: регулярной и случайной. Спектр регулярной последовательности дискретный и создает нечетные гармоники тактовой частоты (т.е. частоты следования), а случайная последовательность имеет непрерывный заштрихованный спектр. Эти спектры показаны на рис. 1.15.
При передаче двоичных сигналов (т.е. 0 и 1) нет необходимости восстанавливать в приемнике импульсы без искажений, т.е. сохранять их форму; для восстановления информации достаточно зафиксировать только знак импульса при двуполярном сигнале либо наличие или отсутствие при однополярном сигнале. Расчеты показывают, что импульсы можно уверенно зафиксировать, если для их передачи используется ширина полосы частот, численно равная скорости передачи в бодах.
Рис. 1.15. Спектры случайной (а) и регулярной (б) составляющей потока импульсов
Так, для стандартной скорости телеграфирования 50 Бод ширина спектра телеграфного сигнала составит 50 Гц. При скорости 2400 Бод (среднескоростная система передачи данных) ширина спектра сигнала равна примерно 2400 Гц.
Для удобства спектры основных сигналов электросвязи сведены в табл. 1.1. Даже беглый взгляд на табл. 1.1 позволяет понять, что для передачи разных видов сигналов требуется различная ширина полосы пропускания системы электросвязи.
Таблица 1.1. Ширина спектров сигналов электросвязи
Вид сигнала | Ширина спектра, Гц |
Телеграфный | 0...100 |
Передачи данных со скоростью 2400 Бод | 0...2400 |
Телефонный | 300... 3400 |
Звукового вещания | 50.. .10 000 |
Факсимильный: - при скорости 120 мин-1 - при передаче газет | 0...1465 0...180 000 |
Телевизионный | 50...6 000 000 |
Контрольные вопросы
1. На какие простейшие составляющие «раскладывается» периодически повторяющийся прямоугольный импульс?
2. Чем отличается спектр периодического сигнала от спектра непериодического сигнала?
3. У какого импульса амплитуда спектральных составляющих убывает быстрее: а) более короткого или более длинного? б) с более крутым фронтом или с более пологим? в) повторяющегося чаще или реже?
4. Какие частотные диапазоны занимают спектры основных сигналов электросвязи?
Список литературы
1. Бакалов В.П., Дмитриков В.Ф., Крук Б.И. Основы теории цепей: Учебник для вузов / Под ред. В.П.Бакалова. - М.: Радио и связь, 2000. - 592 с.
2. Бакалов В.П., Воробиенко П.П., Крук Б.И. Теория электрических цепей. Учебник для вузов. Под ред. В.П. Бакалова. - М.: Радио и связь. 1998. - 444 с.
3. Бакалов В.П., Журавлева О.Б., Крук Б.И. Анализ линейных электрических цепей: Учебное пособие для дистанционного обучения. - Новосибирск: СибГУТИ, 2001.
- Часть I. Способы передачи сообщений
- Глава 1. Спектры
- 1.1 Спектры периодических сигналов
- 1.2. Спектры непериодических сигналов
- 1.3. Сигналы электросвязи и их спектры
- Глава 2. Модуляция
- 2.1. Принципы передачи сигналов электросвязи
- 2.2. Амплитудная модуляция
- 2.3 Угловая модуляция
- 2.4. Импульсная модуляция
- 2.5. Демодуляция сигналов
- Глава 3. Цифровые сигналы
- 3.1. Понятие о цифровых сигналах
- 3.2. Дискретизация аналоговых сигналов
- 3.3. Квантование и кодирование
- 3.4. Восстановление аналоговых сигналов
- Глава 4. Принципы многоканальной передачи
- 4.1. Одновременная передача сообщений
- 4.2. Частотное разделение каналов
- 4.3. Временное разделение каналов
- Глава 5. Цифровые системы передачи
- 5.1. Формирование группового сигнала
- 5.2. Синхронизация
- 6.3. Регенерация цифровых сигналов
- 5.4. Помехоустойчивое кодирование
- Глава 6. Цифровые иерархии
- 6.1. Плезиохронная цифровая иерархия
- 6.2. Синхронная цифровая иерархия
- Глава 7. Линии передачи
- 7.1. Медные кабельные линии
- 7.2. Радиолинии
- 7.3. Волоконно-оптические кабельные линии
- Глава 8. Транспортные сети
- 8.1. Предпосылки создания транспортных сетей
- 8.2. Системы передачи для транспортной сети
- Vc низшего порядка (Low order vc, lovc)
- Vc высшего порядка (High order vc, hovc)
- 8.3. Модели транспортных сетей
- 8.4. Элементы транспортной сети
- 8.5. Архитектура транспортных сетей
- Часть II. Службы электросвязи. Телефонные службы и службы документальной электросвязи
- Глава 9. Основные понятия и определения
- 9.1. Информация, сообщения, сигналы
- 9.2. Системы и сети электросвязи
- 9.3. Эталонная модель взаимосвязи открытых систем
- 9.4. Методы коммутации в сетях электросвязи
- 9.5 Методы маршрутизации в сетях электросвязи
- Т а б л и ц а 9.2. Устройства, реализующие функции маршрутизации
- Глава 10. Телефонные службы
- 10.1. Услуги, предоставляемые общегосударственной системой автоматизированной телефонной связи
- 10.2. Структура городских телефонных сетей (гтс) с низким уровнем цифровизации и перспективы развития
- 10.3. Расчет коммутационного узла с коммутацией каналов 10.3.1. Модель коммутационного узла
- 10.3.1 Модель коммутационного узла
- 10.3.2. Структура коммутационных полей станций и узлов
- 10.3.3. Элементы теории телетрафика
- Глава 11. Телеграфные службы
- 11.1. Сети телеграфной связи
- 11.2. Направления развития телеграфной связи
- Глава 12. Службы пд. Защита от ошибок и преобразование сигналов
- 12.1. Методы защиты от ошибок
- 12.2. Сигналы и виды модуляции, используемые в современных модемах
- Глава 13. Службы пд. Сети пд.
- 13.1. Компьютеры — архитектура и возможности
- 13.2. Принципы построения компьютерных сетей
- 13.3. Международные стандарты на аппаратные и программные средства компьютерных сетей
- 13.4. Сетевые операционные системы
- 13.5. Локальные компьютерные сети
- 13.6. Глобальные компьютерные сети
- 13.7. Телефонная связь по компьютерным сетям
- Глава 14. Факсимильные службы
- 14.1. Основы факсимильной связи
- 14.2. Организация факсимильной связи
- Глава 15. Другие службы документальной электросвязи
- 15.1. Видеотекс
- 15.2. Голосовая почта
- Глава 16. Единая система документальной электросвязи
- 16.1. Интеграция услуг документальной электросвязи [1]
- 16.2. Назначение и основные принципы построения служб обработки сообщений [2]
- 16.3. Многофункциональные терминалы
- Глава 17. Обеспечение информационной безопасности в телекоммуникационных системах
- 17.1. Общие положения
- 17.2. Правовые и организационные аспекты информационной безопасности
- 17.3. Технические аспекты информационной безопасности
- Часть III. Интеграция сетей и служб электросвязи
- Глава 18. Узкополосные цифровые сети интегрального обслуживания (у-цсио)
- 18.1. Пути перехода к узкополосной цифровой сети интегрального обслуживания
- 18.2. Службы и услуги узкополосной цсио
- 18.3. Система управления у-цсио
- Глава 19. Широкополосные и интеллектуальные сети
- 19.1. Условия и этапы перехода к широкополосной сети интегрального обслуживания (ш-цсио)
- 19.2. Услуги ш-цсио
- 19.3. Способы коммутации в ш-цсио
- 19.4. Построение коммутационных полей станций ш-цсио
- 19.5. Причины и условия перехода к интеллектуальной сети (ис)
- 19.6. Услуги ис
- Глава 20. Система межстанционной сигнализации по общему каналу в цсио
- 20.1. Понятие об общем канале сигнализации
- 20.2. Протоколы системы сигнализации № 7 itu-t
- 20.3. Способы защиты от ошибок в окс № 7
- 20.4. Характеристики окс
- 20.5. Способы построения сигнальной сети
- Глава 21. Широкополосные сети и оборудование компании «Huawei Technologies Co, Ltd»
- 21.1. Оптическая сеть абонентского доступа с интеграцией услуг honet
- 21.2. Построение транспортных сетей на базе оборудования компании «Huawei Technologies Co., Ltd»
- 21.3. Цифровая коммутационная система с программным управлением с&с08
- 21.4. Высокоскоростной коммутирующий маршрутизатор Radium 8750
- Часть IV. Современные методы управления в телекоммуникациях
- Глава 22. Общие положения
- 22.1. Многоуровневое представление задач управления телекоммуникациями
- 22.2. Функциональные группы задач управления
- Глава 23. Интегрированные информационные системы управления предприятиями электросвязи
- 23.1. Понятия и определения в области информационных систем управления предприятием
- 23.2. Анализ структуры интегрированной информационной системы управления предприятием регионального оператора связи
- 23.3. Новое системное проектирование как передовая технология на этапе внедрения современных информационных систем
- 23.4. Требования к функциональности интегрированной информационной системы управления предприятием для регионального оператора связи
- 23.5. Требования к используемым информационным технологиям, техническим средствам и программному обеспечению
- Глава 24. Управление услугами. Качество предоставляемых услуг
- 24.1. Система качества услуг электросвязи
- 24.2. Базовые составляющие обеспечения качества услуги
- 24.3. Оценка качества услуг связи с точки зрения пользователя и оператора связи
- Глава 25. Управление услугами.
- 25.1. Общие положения
- 25.2. Классификация аср
- 25.3. Централизованный способ построения системы расчетов
- 25.4. Интеграция аср с системами управления tmn
- 25.5. Основные технические требования для аср
- 25.6. Обзор автоматизированных систем расчетов
- 25.7. Заключение
- Глава 26. Управление сетями и сетевыми элементами
- 26.1. Архитектура систем управления сетями и сетевыми элементами
- 26.2. Системы управления первичными и вторичными сетями
- 26.3. Принципы построения системы управления
- Глава 27. Решения компании strom telecom в области tmn (Foris oss)
- 27.1. Общая характеристика семейства продуктов Foris oss
- 27.2. Автоматизация расчетов. Подсистема TelBill
- 27.3. Многофункциональные подсистемы сбора данных и взаимодействия с атс
- 27.4. Подсистема сбора данных и их биллинговой предобработки TelCharge
- 27.5. Подсистемы TelRes, TelTe, TelRc
- 27.6. Система «Электронный замок»
- 27.7. Подсистема поддержки клиентов tccs (Foris Customer Care Systems)
- 27.8. Подсистема Контакт-центр