4.1. Одновременная передача сообщений
В середине XIX в. телеграф широко распространился по всему миру. Достаточно сказать, что общая протяженность телеграфных линий в Европе, например в 1855 г., составляла почти 40 тыс. км, а уже через 10 лет, в 1865 г., она увеличилась до 160 тыс. км, т.е. в 4 раза. Однако темпы строительства телеграфных линий не могли угнаться эд потребностью в услугах телеграфной связи. За тот же период числа переданных телеграфных депеш возросло с 2 до 18 млн. шт., т.е. 9 раз.
За счет чего же темпы роста телеграфного обмена (есть такой специальный термин) оказались выше темпов строительства теле-графных линий? Как удалось передать телеграмм в 9 раз больше, и число телеграфных линий увеличилось лишь в 4 раза? В те мена были известны два пути повышения эффективности ис-пользования линии связи. Первый - совершенствование организа-ции работы телеграфной службы и телеграфных аппаратов. Другими словами, телеграммы следовало передавать без промедления, одну за другой, и с возможно большей скоростью, т.е. как можно больше букв в минуту. Однако этот способ более эффективного использования линии связи очень быстро оказался исчерпанным. Причина про-ста и естественна. Как бы не улучшался телеграфный аппарат, ско-рость работы на нем даже опытного телеграфиста не превышает 240..300 букв/мин. Второй путь требовал гораздо больших матери-нмьных затрат. Дело в том, что основным типом линий связи в XIX в. были воздушные линии. Вот что представляла собой такая линия. Ни столбах (их называют опорами) подвешивался стальной провод диаметром 3...6 мм, а вторым проводом служила земля. По мере необходимости, т.е. когда обмен телеграфными депешами возрас-тал настолько, что передавать их по этому проводу попросту не успевали, на эти же столбы подвешивался второй провод, затем третий и т.д. Такие линии связи можно назвать многопроводными. Например, в России первая однопроводная телеграфная линия была проложена в 1854 г., а уже через год, в 1855 г., возникла потребность в подвеске второго провода. К 1857 г. в стране существовали пятипроводные телеграфные линии, а на отдельных, особенно за-руженных телеграфными депешами участках, число висящих на опорах проводов достигало 8...12.
Все это привело к тому, что в упомянутом выше 1865 г. длина телеграфных проводов в Европе почти в 3 раза превышала длину телеграфных линий связи и составляла около 450 тыс. км. Между тем изготовление и подвеска каждого последующего провода требовала огромных по тем временам расходов. Да и подвешивание новых проводов не могло продолжаться бесконечно. Ставить же рядом новые опоры и дорого, и громоздко.
Применительно к середине XIX в. проблема формулировалась так: нужно было научиться передавать по одному проводу сразу несколько телеграмм.
Надо сказать, что данная проблема актуальна и по сей день. Возьмем, к примеру, современную спутниковую линию связи. Она позволяет организовать обмен информацией (а это могут быть либо речевое сообщение, либо сведения из банка данных, либо видеоизображение и т.д.) между двумя любыми точками нашей планеты. Но вряд ли кому придет в голову использовать линию для передачи информации только от одного пользователя к другому. Во-первых, это очень дорого. Во-вторых, это просто-напросто неэффективно: в линию «вложены» колоссальные средства, а предоставляется она каждый раз только двум пользователям. Гораздо выгоднее дать возможность как можно большему числу пользователей «арендовать» на время обмена информацией «космический мост» за вполне умеренную плату. Но поскольку каждый из них может выразить желание воспользоваться линией связи в удобное для него время и не захочет мириться с тем, что кто-то уже занял ее, решение проблемы может быть только таким: все абоненты должны пользоваться линией связи одновременно.
Цепи связи проводных кабельных линий и стволы радиолиний могут обеспечить передачу сигнала в широкой полосе частот: от десятков и сотен килогерц до десятков мегагерц в проводных системах и сотен и тысяч мегагерц в радиосистемах. Если сравнить эти цифры с шириной спектра первичных сигналов (см. табл. 1.1), то видно, что полоса частот, в которой работает та или иная линия передачи однока-нальной системы, используется крайне неэффективно.
Линия передачи большой протяженности представляет собой дорогое и громоздкое сооружение, требующее больших затрат сил, средств и времени на строительство. Для содержания линий в исправном состоянии также необходимы значительные силы и средства. Подавляющая часть капитальных затрат приходится на линейные сооружения и лишь незначительная часть - на аппаратуру. Естественно, возникает проблема наиболее эффективного использования линейных сооружений. Техническим решением этой экономической проблемы является одновременная передача по одной цепи большого числа первичных сигналов от разных источников сообщений т.е. создание на одной цепи большого количества независимых каналов.
Первые образцы многоканальной системы появились в России в 30-е годы XX в. В 1934 г. был налажен выпуск 3-канальной системы многократного телефонирования СМТ-34, которая выпускалась вплоть до Великой Отечественной войны. В 1940 г. была введена в опытную эксплуатацию первая в стране 12-канальная аппаратура для воздушных линий. В настоящее время существуют проводные и радиосистемы передачи, позволяющие организовать на одной цепи (и одном стволе) от десятков до тысяч каналов передачи.
Рис. 4.1 иллюстрирует принцип одновременной передачи нес-кольких сообщений с помощью системы передачи. Сообщения a1(t), a2(t), …, aN(t) от N источников преобразуются на передаче в первичные сигналы s1(t), s2(t), …, sN(t). Последние поступают в систему передачи на преобразователь сигналов, где подвергаются специальной обработке и объединяются в групповой сигнал v(t), направляемый в цепь связи. В приемной части системы передачи из искаженного помехой группового сигнала выделяются индивидуальные первичные сигналы отдельных каналов . В приемных первичных преобразователях эти сигналы преобразуются в сообщения .
Ранее уже описывались методы передачи первичных сигналов: выбирается переносчик (гармоническое несущее колебание или последовательность узких импульсов), и его параметры модулируются первичным сигналом по амплитуде (AM или АИМ), частоте (ЧМ или ЧИМ), фазе (ФМ или ФИМ) и т.д.
Однако первичные сигналы s1(t), s2(t), …, sN(t) от N источников сообщений могут существовать одновременно и занимать одинаковые полосы частот (например, это могут быть сигналы речи, занимающие полосу частот 0,3...3,4 кГц). Необходимо, чтобы после преобразования на передаче сигналы отличались друг от друга. Только в этом случае удастся выделить из группового сигнала канальные.
- Часть I. Способы передачи сообщений
- Глава 1. Спектры
- 1.1 Спектры периодических сигналов
- 1.2. Спектры непериодических сигналов
- 1.3. Сигналы электросвязи и их спектры
- Глава 2. Модуляция
- 2.1. Принципы передачи сигналов электросвязи
- 2.2. Амплитудная модуляция
- 2.3 Угловая модуляция
- 2.4. Импульсная модуляция
- 2.5. Демодуляция сигналов
- Глава 3. Цифровые сигналы
- 3.1. Понятие о цифровых сигналах
- 3.2. Дискретизация аналоговых сигналов
- 3.3. Квантование и кодирование
- 3.4. Восстановление аналоговых сигналов
- Глава 4. Принципы многоканальной передачи
- 4.1. Одновременная передача сообщений
- 4.2. Частотное разделение каналов
- 4.3. Временное разделение каналов
- Глава 5. Цифровые системы передачи
- 5.1. Формирование группового сигнала
- 5.2. Синхронизация
- 6.3. Регенерация цифровых сигналов
- 5.4. Помехоустойчивое кодирование
- Глава 6. Цифровые иерархии
- 6.1. Плезиохронная цифровая иерархия
- 6.2. Синхронная цифровая иерархия
- Глава 7. Линии передачи
- 7.1. Медные кабельные линии
- 7.2. Радиолинии
- 7.3. Волоконно-оптические кабельные линии
- Глава 8. Транспортные сети
- 8.1. Предпосылки создания транспортных сетей
- 8.2. Системы передачи для транспортной сети
- Vc низшего порядка (Low order vc, lovc)
- Vc высшего порядка (High order vc, hovc)
- 8.3. Модели транспортных сетей
- 8.4. Элементы транспортной сети
- 8.5. Архитектура транспортных сетей
- Часть II. Службы электросвязи. Телефонные службы и службы документальной электросвязи
- Глава 9. Основные понятия и определения
- 9.1. Информация, сообщения, сигналы
- 9.2. Системы и сети электросвязи
- 9.3. Эталонная модель взаимосвязи открытых систем
- 9.4. Методы коммутации в сетях электросвязи
- 9.5 Методы маршрутизации в сетях электросвязи
- Т а б л и ц а 9.2. Устройства, реализующие функции маршрутизации
- Глава 10. Телефонные службы
- 10.1. Услуги, предоставляемые общегосударственной системой автоматизированной телефонной связи
- 10.2. Структура городских телефонных сетей (гтс) с низким уровнем цифровизации и перспективы развития
- 10.3. Расчет коммутационного узла с коммутацией каналов 10.3.1. Модель коммутационного узла
- 10.3.1 Модель коммутационного узла
- 10.3.2. Структура коммутационных полей станций и узлов
- 10.3.3. Элементы теории телетрафика
- Глава 11. Телеграфные службы
- 11.1. Сети телеграфной связи
- 11.2. Направления развития телеграфной связи
- Глава 12. Службы пд. Защита от ошибок и преобразование сигналов
- 12.1. Методы защиты от ошибок
- 12.2. Сигналы и виды модуляции, используемые в современных модемах
- Глава 13. Службы пд. Сети пд.
- 13.1. Компьютеры — архитектура и возможности
- 13.2. Принципы построения компьютерных сетей
- 13.3. Международные стандарты на аппаратные и программные средства компьютерных сетей
- 13.4. Сетевые операционные системы
- 13.5. Локальные компьютерные сети
- 13.6. Глобальные компьютерные сети
- 13.7. Телефонная связь по компьютерным сетям
- Глава 14. Факсимильные службы
- 14.1. Основы факсимильной связи
- 14.2. Организация факсимильной связи
- Глава 15. Другие службы документальной электросвязи
- 15.1. Видеотекс
- 15.2. Голосовая почта
- Глава 16. Единая система документальной электросвязи
- 16.1. Интеграция услуг документальной электросвязи [1]
- 16.2. Назначение и основные принципы построения служб обработки сообщений [2]
- 16.3. Многофункциональные терминалы
- Глава 17. Обеспечение информационной безопасности в телекоммуникационных системах
- 17.1. Общие положения
- 17.2. Правовые и организационные аспекты информационной безопасности
- 17.3. Технические аспекты информационной безопасности
- Часть III. Интеграция сетей и служб электросвязи
- Глава 18. Узкополосные цифровые сети интегрального обслуживания (у-цсио)
- 18.1. Пути перехода к узкополосной цифровой сети интегрального обслуживания
- 18.2. Службы и услуги узкополосной цсио
- 18.3. Система управления у-цсио
- Глава 19. Широкополосные и интеллектуальные сети
- 19.1. Условия и этапы перехода к широкополосной сети интегрального обслуживания (ш-цсио)
- 19.2. Услуги ш-цсио
- 19.3. Способы коммутации в ш-цсио
- 19.4. Построение коммутационных полей станций ш-цсио
- 19.5. Причины и условия перехода к интеллектуальной сети (ис)
- 19.6. Услуги ис
- Глава 20. Система межстанционной сигнализации по общему каналу в цсио
- 20.1. Понятие об общем канале сигнализации
- 20.2. Протоколы системы сигнализации № 7 itu-t
- 20.3. Способы защиты от ошибок в окс № 7
- 20.4. Характеристики окс
- 20.5. Способы построения сигнальной сети
- Глава 21. Широкополосные сети и оборудование компании «Huawei Technologies Co, Ltd»
- 21.1. Оптическая сеть абонентского доступа с интеграцией услуг honet
- 21.2. Построение транспортных сетей на базе оборудования компании «Huawei Technologies Co., Ltd»
- 21.3. Цифровая коммутационная система с программным управлением с&с08
- 21.4. Высокоскоростной коммутирующий маршрутизатор Radium 8750
- Часть IV. Современные методы управления в телекоммуникациях
- Глава 22. Общие положения
- 22.1. Многоуровневое представление задач управления телекоммуникациями
- 22.2. Функциональные группы задач управления
- Глава 23. Интегрированные информационные системы управления предприятиями электросвязи
- 23.1. Понятия и определения в области информационных систем управления предприятием
- 23.2. Анализ структуры интегрированной информационной системы управления предприятием регионального оператора связи
- 23.3. Новое системное проектирование как передовая технология на этапе внедрения современных информационных систем
- 23.4. Требования к функциональности интегрированной информационной системы управления предприятием для регионального оператора связи
- 23.5. Требования к используемым информационным технологиям, техническим средствам и программному обеспечению
- Глава 24. Управление услугами. Качество предоставляемых услуг
- 24.1. Система качества услуг электросвязи
- 24.2. Базовые составляющие обеспечения качества услуги
- 24.3. Оценка качества услуг связи с точки зрения пользователя и оператора связи
- Глава 25. Управление услугами.
- 25.1. Общие положения
- 25.2. Классификация аср
- 25.3. Централизованный способ построения системы расчетов
- 25.4. Интеграция аср с системами управления tmn
- 25.5. Основные технические требования для аср
- 25.6. Обзор автоматизированных систем расчетов
- 25.7. Заключение
- Глава 26. Управление сетями и сетевыми элементами
- 26.1. Архитектура систем управления сетями и сетевыми элементами
- 26.2. Системы управления первичными и вторичными сетями
- 26.3. Принципы построения системы управления
- Глава 27. Решения компании strom telecom в области tmn (Foris oss)
- 27.1. Общая характеристика семейства продуктов Foris oss
- 27.2. Автоматизация расчетов. Подсистема TelBill
- 27.3. Многофункциональные подсистемы сбора данных и взаимодействия с атс
- 27.4. Подсистема сбора данных и их биллинговой предобработки TelCharge
- 27.5. Подсистемы TelRes, TelTe, TelRc
- 27.6. Система «Электронный замок»
- 27.7. Подсистема поддержки клиентов tccs (Foris Customer Care Systems)
- 27.8. Подсистема Контакт-центр