Динамика поступательного движения.
Основной закон поступательного движения: производная по времени от количества движения К материальной точки или системы точек относительно неподвижной (инерциальной) системы отсчета равна главному вектору всех сил, приложенных к системе: dK/dt = F, или mwс = F, где wс – ускорение центра инерции системы. Кi = mi vi
В прямоугольных декартовых координатах уравнение движения имеет вид:
dKx/dt = Fх, dKy/dt = Fy, dKz/dt = Fz. mi = Fiх, mi = Fiу, mi = Fiz.
m dVx/dt = Fх, m dVy/dt = Fy
П ростейшие случаи поступательного движения твердого тела.
а) Движение по инерции (F = 0) – равномерно поступательное движение (с постоянной скоростью):
mv = const, а = 0. v = const, S = vt.
б) Движение под действием постоянной силы – равномерно ускоренное движение (с постоянным ускорением):
(mv) = F = const, mv = Ft + mv0, где mv - количество движения тела в начальный момент времени t = 0.
Время, за которое происходит изменение скорости из состояния покоя t=V/a
Из состояния покоя изменение скорости к моменту t: V=at Тогда S=vt/2 = at2/2
в) Неравномерно ускоренное движение
dS=Vdt S=
Тело брошено вертикально вверх с начальной скоростью v0:
hmax = v02/2g.
Р абота = Сила х Перемещение.
При F = const (в случае постоянной силы в процессе перемещения) A = F s, в случае переменной силы – интеграл от силы по перемещению A = .
Если тело движется в направлении действия силы тяжести, то над телом совершается работа A = mg h.
Чтобы поднять тело (увеличить расстояние от центра Земли), над ним следует совершить работу. Работа, совершаемая силой F при движении против силы тяжести (подъеме тела) на высоту h не зависит от пути – зависит только от того, насколько тело может опуститься до заданного уровня. Эта работа запасается в виде потенциальной энергии тела (энергии положения) A =Wп = mgh, равной работе, затраченной на подъем тела.
Это не полная потенциальная энергия – только приращение энергии при подъеме тела на высоту (начало отсчета выбирается произвольно). С учетом изменения гравитационного поля по высоте Wп = m .
Потенциальной энергией называется энергия, зависящая только от взаимного расположения материальных точек (или тел). Во всех физических явлениях важна не сама потенциальная энергия, а ее изменение, которым определяется совершаемая работа. Уровень отсчета изменений заранее оговаривается.
П ри подъеме на высоту накопилась потенциальная энергия Wп, при падении с этой высоты эта потенциальная энергия превратилась в кинетическую Wк. Wп = Wк = mgh = mv2/2.
Тело брошено горизонтально с начальной скоростью v0 – комбинация двух движений взаимно перпендикулярных друг другу: горизонтального (равномерного прямолинейного) и вертикального (свободного падения).
Координаты каждой точки траектории:
- перемещение тела в горизонтальном направлении x = v0 t;
- перемещение тела в вертикальном направлении (равномерно ускоренное движение с ускорением g) y = gt2/2.
Из этих уравнений движения: t = x / v0 , y = gx2 / 2v0 – парабола.
Тело, брошено под углом к горизонту.
Как и в случае горизонтально брошенного тела, тело движется, в результате комбинации двух движений: равномерного прямолинейного движения под углом к горизонту и свободного падения в вертикальном направлении (под действием только силы тяжести – без реакции опоры).
В двумерной постановке тело, брошенное под углом к горизонту, рассматривается как материальная точка, движущаяся под действием лишь одной силы - постоянной силы его веса Р, направленной вертикально вниз. Начало координат – в точке приложения силы, обеспечившей начальную скорость полета.
Тело массы m, брошенное под углом к горизонту, движется под действием постоянной силы веса Р = Fт, направленной вертикально вниз Р = mg.
Уравнения движения можно представить как в векторной, так и в координатной форме.
Для произвольной точки М (х,у) траектории тела:
mv = Р t + mv0, или v = gt + v0.
Проецируя векторные соотношения на оси координат, получим уравнения движения в координатной форме.
m dvx /dt = 0, vx = dx/dt,
m dvy /dt = - mg, vy = dy/dt
Необходимо найти зависимости x(t), y(t), vx(t), vy(t) из решения полученной системы дифференциальных уравнений при начальных условиях:
x(0) = x0, y (0) = y0, vx (0) = v0 cos Θ 0, vy (0) = v0 sin Θ 0.
Сопротивление воздуха
Cила сопротивления воздуха Fа/д (полная аэродинамическая сила) направлена противоположно вектору скорости тела прямо пропорциональна величине скоростного потока q и характерной площади тела S:
Fа/д = - CrqS, q = ρv2/2,
где Cr - коэффициент сопротивления, зависящий от свойств среды и тела, скорости потока, ρ [кг/м3] – плотность воздуха, зависит от высоты.
Коэффициент сопротивления определяется опытным путем, и для приближенных расчетов для тела в форме шара может быть принят независимым от скорости потока и равным 0,25 (плюс – минус 0,05 – в зависимости от скорости).
Тогда система уравнений запишется в виде:
dvx /dt = Cr qS cos Θ / m, vx = dx/dt,
dvy /dt = Cr qS sin Θ / m - g, vy = dy/dt
ρ = ρ (y), α = arctg vx / vy, q = ρv2/2
при начальных условиях:
x (0) = x0, y (0) = y0,
vx (0) = v0 cos Θ 0, vy (0) = v0 sin Θ 0.
Зависимость ρ = ρ (y) может быть задана в табличном или в аналитическом виде.
Задача не имеет аналитического решения и решается численным интегрированием. Определяется влияние шага интегрирования на точность решения задачи.
Изменение с высотой величины ускорения силы тяжести Земли
Ускорение свободного падения одинаково для всех тел и, также как и вес, зависит от географической широты и высоты над уровнем моря.
Стандартное (нормальное) значение ускорения свободного падения на уровне моря составляет g0 = 9,81 м/сек2. Для определения ускорения при удалении от поверхности Земли на высоту h используется формула g = g0[R0/(R0 + h)]2, R0 = 6370 км - радиус Земли. На географических полюсах (φ = 900) Fц = 0 и вес тела равен силе притяжения его к Земле. Вследствие того, что центростремительная сила зависит от широты, вес тела максимален на полюсах и минимален на экваторе, различие не превышает 0,55%.
Величина выталкивающей силы (закон Архимеда)
На тело действует выталкивающая сила воды в соответствии с законом Архимеда.
По закону Архимеда выталкивающая сила равна Fарх = g(y)Vρ0(y). Здесь Vρ0(y) – масса вытесненного воздуха, V – объем тела.
Величины присоединенной массы
Присоединенная масса может быть определена по формуле: m = 0,5 Vρ0.
Изменения плотности атмосферы с высотой
Гипотеза о постоянстве плотности атмосферы (ρ0 = 1,225 кг/м3) с высотой полета изменяется ρ = ρ (h), где h – высота над уровнем моря [м]: ρ = ρ0- 0, 00014h.
Кривизны Земли
Для учета кривизны Земли необходимо строить новую математическую модель - начало системы координат помещается в центр Земли. В этом случае сила притяжения направлена в начало координат (а не перпендикулярно оси координат), и тип кривой полета становится другим (эллипс, а не парабола).
Движение тела переменной массы.
Дифференциальное уравнение поступательного движения твердого тела, масса которого зависит от времени, имеет вид
(mv) = F + v1 , где F – главный вектор всех сил, действующих на тело, v1 – скорость присоединяющейся массы до присоединения (если dm/dt > 0) или скорость отделяющейся массы после отделения (если dm/dt < 0).
Ускорение w тела переменной массы w = 1/m(F + Fp), где Fp = (v1 – v)dm/dt = udm/dt – реактивная сила, равная произведению производной по времени от массы тела на относительную скорость u = v1 – v присоединяющейся или отделяющейся массы.
Пример. Движение ракеты в условиях отсутствия внешнего силового воздействия.
Реактивная сила, создаваемая двигателем, - сила тяги ракеты: Fp = u dm/dt, где dm/dt - скорость уменьшения массы ракеты за счет выгорания топлива.
Уравнение движения ракеты: m dv/dt = u dm/dt,
где v и m - скорость и масса ракеты в произвольный момент времени t, u - относительная скорость отделяющейся массы.
Векторы dv/dt и u направлены в противоположные стороны, потому m dv/dt = - u dm/dt, откуда при u = const следует уравнение Циолковского: v = v0 + ulnm0/m, где v0 и m0 - начальные значения скорости и массы ракеты (при t =0).
- 1 Методологические основы моделирования сложных систем
- 1.1 Системность
- Понятия общей теории систем
- Определение понятия системы
- Основные свойства, обязательные для любой системы.
- Взаимодействие и взаимозависимость системы и внешней среды.
- Определение понятий элементов, связей, функций, внешней среды системы. Элемент
- Внешняя среда
- Функции системы
- Сложность систем
- Системный подход
- Классификация систем
- Развитие искусственной системы и ее жизненный цикл
- 1.2 Моделирование
- Общая методология моделирования
- Основные принципы моделирования:
- Процесс моделирования
- Анализ и синтез в моделировании
- Примеры сложных систем Космическая система наблюдения Земли как сложная техническая система Задачи космической системы наблюдения Земли
- Состав и структура космической системы наблюдения Земли
- 2 Построение математических моделей
- 2.1 Математическая модель, математическое моделирование – основные понятия, термины и определения
- Цели математического моделирования
- 2.2 Общие методы построения математической модели
- Микроподход и макроподход в исследованиях системы.
- Формальная запись модели системы
- Понятие вариационных принципов
- Модульное построение моделей
- 2.3 Требования к построению модели
- Адекватность и достоверность модели
- Равнозначимость внешнего и внутреннего правдоподобия
- Анализ чувствительности модели
- Пример анализа на чувствительность экономической задачи
- 3 Математические модели состояния и структуры системы
- 3.1 Модель состояния системы Состояние системы и ее функционирование
- Формализация процесса функционирования системы
- 3.2 Модель структуры системы Основные понятия структуры системы
- Модель состава и структуры системы
- Методология моделирования структуры системы
- Виды структур
- Формирование структуры модели с позиций структурного моделирования.
- Построение структурных моделей
- 3.3 Модель процесса функционирования
- Установление функциональных зависимостей
- Неопределенность функционирования системы
- Пути уменьшения неопределенностей
- Основные требования к модели процесса функционирования
- Анализ функционирования, анализ структуры технической системы
- Функционально – физический анализ технических объектов.
- Пример разработки моделей деятельности организации
- Пример функционально – физического анализа технических объектов
- Конструкция бытовой электроплитки
- Функционально стоимостной анализ.
- 4 Этапы построения моделей
- 4.1 Постановка задачи моделирования
- Разработка содержательной модели
- Разработка концептуальной модели
- Описание внешних воздействий
- Декомпозиция системы
- Подготовка исходных данных для математической модели
- Содержание концептуальной модели
- 4.2 Разработка математической модели
- Разработка функциональных соотношений
- Выбор метода решения задачи
- Проверка и корректировка модели
- Анализ чувствительности модели
- Проверка адекватности модели
- Контроль модели
- Корректировка модели
- Уточнение модели проектируемого объекта
- Реализация математической модели в виде программ для эвм
- 4.3 Практическое использование построенной модели и анализ результатов моделирования
- Примеры построения моделей Математическая реставрация Тунгусского феномена
- 1. Сбор информации о явлении, выдвижение гипотез.
- 2. Содержательная постановка задачи исследования явления.
- 3. Математическая постановка задачи.
- 4. Анализ результатов.
- 5. Проверка адекватности модели – сравнение с натурным экспериментом.
- 6. Анализ результатов.
- Прогноз климатических изменений
- 1. Содержательная постановка задачи
- 2. Концептуальная постановка. Построение математической модели.
- 3. Проведение вычислительного эксперимента.
- 4. Анализ результатов вычислительного эксперимента.
- 5 Виды математических моделей
- 5.1 Классификация математических моделей
- Пример представления модели различной сложности и классификации.
- 5.2 Классификация математических моделей в зависимости от оператора модели
- Линейные и нелинейные модели
- Обыкновенные дифференциальные модели
- 5.3 Классификация математических моделей в зависимости от параметров модели Непрерывные и дискретные модели
- Детерминированные и неопределенные модели
- Дискретно-детерминированная модель
- Статические и динамические модели
- Стационарные и нестационарные модели.
- Формализация системы в виде автомата
- Формализация системы в виде агрегата
- Моделирование процесса функционирования агрегата
- Моделирование агрегативных систем
- Модель сопряжения элементов
- 6 Математические модели распределения ресурсов в исследовании операций
- 6.1 Моделирование операций распределения ресурсов
- Формулировка задачи математического программирования
- 6.2 Модели линейного программирования
- Формулировка общей задачи линейного программирования.
- Типовые задачи линейного программирования
- Транспортная задача.
- Задача коммивояжера.
- Задача о ранце.
- Общая задача теории расписаний.
- Примеры сведения практических задач к канонической транспортной задаче
- 6.3 Распределительные задачи линейного программирования
- Примеры распределительных задач.
- Распределение транспортных единиц по линиям
- Выбор средств доставки грузов.
- Задача о назначениях
- Экономическая интерпретация задач линейного программирования.
- Перевозки взаимозаменяемых продуктов
- Перевозка неоднородного продукта на разнородном транспорте.
- 7 Математические модели физических явлений и процессов. Универсальность моделей
- 7.1 Математические модели на основе фундаментальных законов
- Теоретический метод составления математических моделей
- Основные фундаментальные законы механики
- Работа, энергия, мощность
- 7.2 Уравнения движения
- Динамика поступательного движения.
- 7.3 Уравнения состояния
- Термодинамическая система.
- Упругие свойства твердых тел.
- Жидкости.
- 7.4 Универсальность моделей
- Модели на основе аналогий
- Типовые математические модели элементов и подсистем
- Модель колебательного процесса
- Модель консервативной системы.
- Электрическая подсистема.
- Модели элементов гидравлических систем
- Модели элементов пневматических систем
- 8 Моделирование производственных процессов
- 8.1 Модели систем массового обслуживания
- Основные элементы систем массового обслуживания.
- Характеристики потока
- Классификация смо
- Оценка эффективности смо
- Аналитические и статистические модели
- 8.2 Модели производственных процессов
- Дискретный производственный процесс
- Непрерывный производственный процесс
- Агрегатное представление производственного процесса
- Имитационное моделирование процессов функционирования
- Формализация основных операций производственного процесса Формализованная схема дискретного производственного процесса.
- Формализация отклонения течения производственного процесса от нормального
- Моделирование комплексного процесса обработки, сборки и управления при поточном производстве
- Формализованная схема непрерывного производственного процесса.
- 9 Синтез модели (проекта) системы
- 9.1 Проектирование системы как процесс создания (синтеза) ее модели
- 9.2 Методология проектирования
- Типовые проектные процедуры формирования облика системы
- 9.3 Эффективность системы Понятие эффективности системы
- Формирование модели цели системы
- Выбор критериев и показателей эффективности
- Основные принципы выбора критериев эффективности:
- Проблемы многокритериальности
- 9.4 Технология проектирования
- 9.5 Принятие решений в проектировании
- Выбор в условиях неопределенности
- Моделирование принятия решения
- Прогнозирование в принятии решений
- 9.6 Анализ инвестиционной привлекательности системы Основные типы инвестиций.
- Основные экономические концепции инвестиционного анализа.
- Состав работ при инвестиционном проектировании
- Конкурентоспособность проектируемой системы Оценка потенциальной емкости рынка и потенциального объема продаж
- Оценка конкурентоспособности
- Методы оценки эффективности инвестиций
- Метод определения чистой текущей стоимости.
- Метод расчета рентабельности инвестиций
- Метод расчета внутренней нормы прибыли
- Расчет периода окупаемости инвестиций
- Маркетинг и управление проектом
- Задачи управления проектами
- 9.7 Особенности синтеза модели (проекта) технических систем Этапы проектирования
- Особенности проектирования адаптивных систем
- Моделирование функционирования технической системы Особенности построения моделей при проектировании
- Формирование технического облика системы
- Формирование структуры системы
- Выбор основных проектных параметров системы
- Формирование множества вариантов системы
- 10 Информационное обеспечение синтеза системы
- 10.1 Основные задачи и типы информационных систем Общие свойства информационных систем
- Файл-серверные информационные системы
- Клиент-серверные информационные системы
- Архитектура Интернет/Интранет
- Хранилища данных и системы оперативной аналитической обработки данных
- 10.2 Особенности проектирования информационных систем
- Схемы разработки проекта
- 1. Предпроектные исследования
- 2 Постановка задачи
- 3 Проектирование системы
- Архитектура программного обеспечения
- Подсистема администрирования.
- Техническая архитектура
- Организационное обеспечение системы
- 4 Реализация и внедрение системы
- 10.3 Концепции автоматизации проектирования
- История развития сапр
- Классификация сапр
- Стратегическое развитие сапр Современное состояние сапр
- Направления разработки проектной составляющей сапр
- Разновидности сапр
- Математическое и информационное обеспечение сапр
- 11 Моделирование процесса управления
- 11.1 Основные определения
- Формальная запись системы с управлением
- 11.2 Модели систем автоматического управления
- Устойчивость движения систем
- Определение программного движения и управление движением
- 11.3 Модели автоматизированных систем управления
- Модели автоматизированных систем управления производственными процессами
- Модели автоматизированных систем управления предприятием