Задачи управления проектами
Успешность деятельности предприятия зависит от непрерывной последовательности управленческих решений по инвестиции в проект и управление проектом. Эти решения базируются на анализе внешней среды кА общего фона конкурентоспособности продукции.
Управление проектом представляет собой организацию планирования, руководства, координации трудовых, финансовых и материально-технических ресурсов на протяжении жизненного цикла системы, направленную на эффективное достижение целей проекта.
Проект и процесс его реализации трактуются как сложная система, в которой сам проект выступает как управляемая подсистема.
Основу управления проектами составляет взгляд на проект как на изменение исходного состояния любой системы, связанное с затратами времени и средств - процесс этих изменений осуществляется в рамках бюджета и временных ограничений.
Такой подход позволяет все изменения в экономике, управлении, укладе жизни свести к системе инвестиционных проектов, а управление ими – к управлению инвестициями (инвестиционному менеджменту).
Основные функции управления проектом: управление качеством, временем, риском, персоналом, контрактами и обеспечением проекта, взаимодействиями и информационными связями.
Управляемые параметры проекта: объемы и виды работ, расходы по проекту, временные параметры, ресурсы для осуществления проекта, качество проектных решений.
Достижение эффективных результатов предполагает поиск оптимальных сочетаний между целями, сроками, затратами, качеством и др. характеристиками проекта.
Управление работами по проекту
Управление работами по проекту состоит из следующих процедур: мониторинг проекта и отчетности его состояния, управление проблемами, рисками и угрозами, контроль изменений проекта.
Мониторинг проекта и отчетность его состояния предполагает постоянное отслеживание хода выполнения работ по проекту: общее состояние, проблемы, риски и угрозы, требования к изменениям проекта.
При мониторинге проекта (постоянное слежение за продвижением проекта) оцениваются полученные результаты, сравниваются с запланированными и выявляются расхождения (отклонения). Приемлемые уровни отклонений определяются в начале проектирования, что позволяет минимизировать проектный риск.
Процедура управления проблемами состоит из шагов: выявление и анализ проблемы, разработка возможных действий по решению проблемы, решение проблемы.
Процедура контроля изменений проекта состоит из шагов: выявление и анализ требований на изменение проекта, корректировка плана работ.
Управление рисками
При анализе долгосрочных инвестиций предпочтение при равных доходах отдается проектам с меньшим риском. Под риском понимается возможность получения меньших доходов, чем ожидается инвестором.
Появление риска как неотъемлемой части экономического процесса - объективный экономический закон. Риск определяется неопределенностью хозяйственной ситуации, обусловлен следующими факторами: отсутствием необходимой информации, случайностью, противодействием. Могут быть проекты с разными доходами и разными степенями риска, например, при большем доходе большая степень риска – какой проект предпочесть?
Для определения предпочтения инвестиций необходимо определить понятие риска, оценить риски, управлять рисками.
В общем случае риск может быть вызван: неопределенностью хозяйственной деятельности, отсутствием необходимой информации, случайными факторами, противодействием.
Понятия неопределенности риска и риска как возможной вероятности потерь различно, но между ними нет четкого разделения.
Условия неопределенности не позволяют оценить не только вероятности возможных исходов событий, но и сам набор событий.
Статистические методы анализа рисков и обоснования принимаемых решений могут применяться только при знании вероятности событий.
Процедура управления рисками и угрозами успешного завершения проекта состоит из следующих шагов: выявление риска или угрозы, их анализ, разработка возможных действий по уменьшению рисков и ликвидации угроз.
Факторы, определяющие риски: неполнота или неточность исходных данных для системы, требования к функциональному или информационному обеспечениям не могут быть реализованы в заданные сроки или объемы финансирования, изменение постановки задачи заказчиком в процессе разработки.
Анализ рисков конкретного проекта осуществляется в несколько этапов.
Первый этап – выявление, классификация и описание возможных рисков. Отнесение рисков к той или иной категории при их классификации не всегда однозначно – проводится анализ взаимосвязи и взаимовлияния рисков.
Последующие этапы - анализ причин возникновения рисков, прогноз возможных последствий их осуществления, анализ воздействий рисков на прогнозную результативность проекта. Выделяются управляемые и неуправляемые риски, осуществляется разработка мероприятий по снижению рисков и анализ возможности реализации мероприятий.
При классификации риски можно разделить на две основные группы: внешние - риски, независимые от конкретного проекта, и внутренние - риски, связанные с конкретным проектом.
Риски, независимые от конкретного проекта:
- природно-естественные – изменение природно-климатических условий, стихийные бедствия;
- политические – изменение государственной политики, социально-политические изменения, изменения законодательной и нормативной баз;
- экономические – изменение внутриэкономических (нестабильность экономической ситуации и условий инвестирования) и внешнеэкономических факторов (введение ограничений на торговлю и поставки);
- технико-технологические – изменение технических условий, форс-мажорные обстоятельства (непреодолимая сила);
- транспортные – изменение условий перевозки грузов;
- финансовые – изменение покупательной способности денег.
В свою очередь, финансовые риски, связанные с изменением покупательной способности денег, можно разделить на категории:
- инфляционные – обесценивание реальных денежных доходов при росте инфляции;
- дефляционные – ухудшение экономических условий предпринимательства и снижение доходов при снижении уровня цен;
- валютные – опасность валютных потерь, связанных с изменениями курсов валют при проведении внешнеэкономических, кредитных и других валютных операций.
Риски, связанные с конкретным проектом (опасность потерь в результате финансово-хозяйственной деятельности - неопределенность результатов проекта):
- имущественные – возможность потерь имущества по причине кражи, диверсии, халатности, перенапряжения технической и технологической систем;
- производственные – невыполнение планируемых объемов работ, связанное с недостатками планирования, внедрением новой техники и технологии, гибелью или повреждением основных и оборотных фондов, увеличением затрат;
- финансовые – срывы договорных обязательств, задержки платежей, поставки товаров вследствие неполноты или неточности информации о финансовом положении предприятий-участников;
- ликвидности – возможность потерь при реализации ценных бумаг или товаров при изменении оценки их качества и потребительской стоимости;
- инвестиционные – неполучение прибыли, снижение доходности вследствие неправильной оценки спроса, конкурентов и цен на продукцию проекта, упущенная выгода в результате неосуществления какого либо мероприятия (например, страхования);
- экологические - возмещение ущерба вследствие загрязнения окружающей среды.
Для новой системы все виды рисков - технические, производственно-экономические, коммерческие - значительно выше.
В каждом конкретном проекте выделяются группы рисков: по возможности страхования, по возможности управления, информационные, связанные с недостаточностью знаний о внешней среде проекта.
Неопределенность и степень риска во многом определяются структурой, объемом, возможностями информационно-аналитической системы.
Способы оценки степени риска
Степень риска определяется вероятностью наступления случая потерь и размером возможного ущерба.
Основное назначение оценки степени риска – подготовка необходимых данных для принятия решений о выработке антирисковых мероприятий для защиты от возможных финансовых потерь.
Качественный анализ рисков предполагает выявление возможных рисков, их классификацию, выявление возможных причин их возникновения, описание последствий реализации рисков и потерь, связанных с ликвидацией этих последствий.
Количественный анализ рисков проводится на основе качественного анализа и предполагает численное определение размеров отдельных рисков и рискованности проекта в целом. Чтобы количественно определить величину риска, необходимо знать все возможные последствия какого-нибудь отдельного действия и вероятность самих последствий - возможность получения определенного результата.
Основные методы оценки рисков: статистический метод, метод экспертных оценок, использование аналогов.
Статистический метод требует больших объемов статистической информации, позволяет количественно оценить как проект, так и предприятие в целом (анализ динамики доходов).
Метод экспертных оценок дает возможность оценить разнообразные качественные факторы при небольшом объеме информации, включает комплекс логических и математико-статистических процедур для анализа информации и принятия решений.
Метод аналогий позволяет оценить вероятность рисков конкретного проекта на основе анализа аналогичных, часто повторяющихся проектов.
При оценке рисков используются анализ чувствительности эффективности проекта к изменению конкретных риск-переменных, анализ сценариев возможных условий реализации проекта с учетом взаимосвязи факторов риска и параметров проекта, имитационное моделирование множества сценариев, факторов риска, параметров проекта на всех этапах жизненного цикла.
Негативное влияние рисков на результаты инвестирования проекта вызывает необходимость в их минимизации.
В основе минимизации риска лежит подход к риску как к изменяемому параметру, управление которым направлено на обеспечение приемлемого уровня риска, а не на полное его исключение, т.е. на обеспечение оптимального соотношения цели проекта (прибыли) и риска.
Антирисковые мероприятия представляют собой систему организационно-экономических стабилизационных механизмов, действующих на протяжении всего жизненного цикла проекта. Затраты на создание такой системы зависят от условий реализации проекта и оценок степени возможных рисков. Эти затраты учитываются в бизнес-плане при определении эффективности проекта - необходимо выбрать стратегию, которая уменьшит степень противодействия и тем самым снизит степень риска. При таком подходе периодически пересматриваемый бизнес-план является инструментом управления инвестиционным проектом. Объектами управления являются риски и экономические отношения между субъектами хозяйственной деятельности (страхователем и страховщиком, заемщиком и кредитором, между участниками проекта).
Управление рисками основывается на комплексе дисциплин специального и общего характера, а также на базах данных по различным сферам (общеэкономическая, материально-производственная, финансовая, социальная, правовая).
Математический аппарат для выбора стратегии дает теория игр – позволяет лучше понимать конкурентную обстановку и свести к минимуму степень риска.
Теория принятия решений на основе полученных данных дает лицу, принимающему решение (предпринимателю) аппарат для принятия предпочтительного решения.
На основе анализа рисков создается совокупность инструментов (мер) управления рисками на каждой стадии жизненного цикла.
Наиболее общие инструменты управления рисками.
Информационно-аналитические – создание в рамках проекта системы сбора и анализа информации, направленной на поиск, систематизацию и описание факторов риска и методов управления ими.
Организационные – создание системы управления рисками и реагирования на риски, аварийно-спасательных служб и их технического обеспечения.
Технические – обеспечение безопасности на этапах проектирования и наземной отработки, системы контроля за технологическим режимом производства, входной контроль закупаемых материалов и оборудования.
Финансовые – оптимальное распределение рисков между участниками проекта, создание резервных фондов, страхование рисков.
Кадровые – обучение и повышение квалификации персонала.
- 1 Методологические основы моделирования сложных систем
- 1.1 Системность
- Понятия общей теории систем
- Определение понятия системы
- Основные свойства, обязательные для любой системы.
- Взаимодействие и взаимозависимость системы и внешней среды.
- Определение понятий элементов, связей, функций, внешней среды системы. Элемент
- Внешняя среда
- Функции системы
- Сложность систем
- Системный подход
- Классификация систем
- Развитие искусственной системы и ее жизненный цикл
- 1.2 Моделирование
- Общая методология моделирования
- Основные принципы моделирования:
- Процесс моделирования
- Анализ и синтез в моделировании
- Примеры сложных систем Космическая система наблюдения Земли как сложная техническая система Задачи космической системы наблюдения Земли
- Состав и структура космической системы наблюдения Земли
- 2 Построение математических моделей
- 2.1 Математическая модель, математическое моделирование – основные понятия, термины и определения
- Цели математического моделирования
- 2.2 Общие методы построения математической модели
- Микроподход и макроподход в исследованиях системы.
- Формальная запись модели системы
- Понятие вариационных принципов
- Модульное построение моделей
- 2.3 Требования к построению модели
- Адекватность и достоверность модели
- Равнозначимость внешнего и внутреннего правдоподобия
- Анализ чувствительности модели
- Пример анализа на чувствительность экономической задачи
- 3 Математические модели состояния и структуры системы
- 3.1 Модель состояния системы Состояние системы и ее функционирование
- Формализация процесса функционирования системы
- 3.2 Модель структуры системы Основные понятия структуры системы
- Модель состава и структуры системы
- Методология моделирования структуры системы
- Виды структур
- Формирование структуры модели с позиций структурного моделирования.
- Построение структурных моделей
- 3.3 Модель процесса функционирования
- Установление функциональных зависимостей
- Неопределенность функционирования системы
- Пути уменьшения неопределенностей
- Основные требования к модели процесса функционирования
- Анализ функционирования, анализ структуры технической системы
- Функционально – физический анализ технических объектов.
- Пример разработки моделей деятельности организации
- Пример функционально – физического анализа технических объектов
- Конструкция бытовой электроплитки
- Функционально стоимостной анализ.
- 4 Этапы построения моделей
- 4.1 Постановка задачи моделирования
- Разработка содержательной модели
- Разработка концептуальной модели
- Описание внешних воздействий
- Декомпозиция системы
- Подготовка исходных данных для математической модели
- Содержание концептуальной модели
- 4.2 Разработка математической модели
- Разработка функциональных соотношений
- Выбор метода решения задачи
- Проверка и корректировка модели
- Анализ чувствительности модели
- Проверка адекватности модели
- Контроль модели
- Корректировка модели
- Уточнение модели проектируемого объекта
- Реализация математической модели в виде программ для эвм
- 4.3 Практическое использование построенной модели и анализ результатов моделирования
- Примеры построения моделей Математическая реставрация Тунгусского феномена
- 1. Сбор информации о явлении, выдвижение гипотез.
- 2. Содержательная постановка задачи исследования явления.
- 3. Математическая постановка задачи.
- 4. Анализ результатов.
- 5. Проверка адекватности модели – сравнение с натурным экспериментом.
- 6. Анализ результатов.
- Прогноз климатических изменений
- 1. Содержательная постановка задачи
- 2. Концептуальная постановка. Построение математической модели.
- 3. Проведение вычислительного эксперимента.
- 4. Анализ результатов вычислительного эксперимента.
- 5 Виды математических моделей
- 5.1 Классификация математических моделей
- Пример представления модели различной сложности и классификации.
- 5.2 Классификация математических моделей в зависимости от оператора модели
- Линейные и нелинейные модели
- Обыкновенные дифференциальные модели
- 5.3 Классификация математических моделей в зависимости от параметров модели Непрерывные и дискретные модели
- Детерминированные и неопределенные модели
- Дискретно-детерминированная модель
- Статические и динамические модели
- Стационарные и нестационарные модели.
- Формализация системы в виде автомата
- Формализация системы в виде агрегата
- Моделирование процесса функционирования агрегата
- Моделирование агрегативных систем
- Модель сопряжения элементов
- 6 Математические модели распределения ресурсов в исследовании операций
- 6.1 Моделирование операций распределения ресурсов
- Формулировка задачи математического программирования
- 6.2 Модели линейного программирования
- Формулировка общей задачи линейного программирования.
- Типовые задачи линейного программирования
- Транспортная задача.
- Задача коммивояжера.
- Задача о ранце.
- Общая задача теории расписаний.
- Примеры сведения практических задач к канонической транспортной задаче
- 6.3 Распределительные задачи линейного программирования
- Примеры распределительных задач.
- Распределение транспортных единиц по линиям
- Выбор средств доставки грузов.
- Задача о назначениях
- Экономическая интерпретация задач линейного программирования.
- Перевозки взаимозаменяемых продуктов
- Перевозка неоднородного продукта на разнородном транспорте.
- 7 Математические модели физических явлений и процессов. Универсальность моделей
- 7.1 Математические модели на основе фундаментальных законов
- Теоретический метод составления математических моделей
- Основные фундаментальные законы механики
- Работа, энергия, мощность
- 7.2 Уравнения движения
- Динамика поступательного движения.
- 7.3 Уравнения состояния
- Термодинамическая система.
- Упругие свойства твердых тел.
- Жидкости.
- 7.4 Универсальность моделей
- Модели на основе аналогий
- Типовые математические модели элементов и подсистем
- Модель колебательного процесса
- Модель консервативной системы.
- Электрическая подсистема.
- Модели элементов гидравлических систем
- Модели элементов пневматических систем
- 8 Моделирование производственных процессов
- 8.1 Модели систем массового обслуживания
- Основные элементы систем массового обслуживания.
- Характеристики потока
- Классификация смо
- Оценка эффективности смо
- Аналитические и статистические модели
- 8.2 Модели производственных процессов
- Дискретный производственный процесс
- Непрерывный производственный процесс
- Агрегатное представление производственного процесса
- Имитационное моделирование процессов функционирования
- Формализация основных операций производственного процесса Формализованная схема дискретного производственного процесса.
- Формализация отклонения течения производственного процесса от нормального
- Моделирование комплексного процесса обработки, сборки и управления при поточном производстве
- Формализованная схема непрерывного производственного процесса.
- 9 Синтез модели (проекта) системы
- 9.1 Проектирование системы как процесс создания (синтеза) ее модели
- 9.2 Методология проектирования
- Типовые проектные процедуры формирования облика системы
- 9.3 Эффективность системы Понятие эффективности системы
- Формирование модели цели системы
- Выбор критериев и показателей эффективности
- Основные принципы выбора критериев эффективности:
- Проблемы многокритериальности
- 9.4 Технология проектирования
- 9.5 Принятие решений в проектировании
- Выбор в условиях неопределенности
- Моделирование принятия решения
- Прогнозирование в принятии решений
- 9.6 Анализ инвестиционной привлекательности системы Основные типы инвестиций.
- Основные экономические концепции инвестиционного анализа.
- Состав работ при инвестиционном проектировании
- Конкурентоспособность проектируемой системы Оценка потенциальной емкости рынка и потенциального объема продаж
- Оценка конкурентоспособности
- Методы оценки эффективности инвестиций
- Метод определения чистой текущей стоимости.
- Метод расчета рентабельности инвестиций
- Метод расчета внутренней нормы прибыли
- Расчет периода окупаемости инвестиций
- Маркетинг и управление проектом
- Задачи управления проектами
- 9.7 Особенности синтеза модели (проекта) технических систем Этапы проектирования
- Особенности проектирования адаптивных систем
- Моделирование функционирования технической системы Особенности построения моделей при проектировании
- Формирование технического облика системы
- Формирование структуры системы
- Выбор основных проектных параметров системы
- Формирование множества вариантов системы
- 10 Информационное обеспечение синтеза системы
- 10.1 Основные задачи и типы информационных систем Общие свойства информационных систем
- Файл-серверные информационные системы
- Клиент-серверные информационные системы
- Архитектура Интернет/Интранет
- Хранилища данных и системы оперативной аналитической обработки данных
- 10.2 Особенности проектирования информационных систем
- Схемы разработки проекта
- 1. Предпроектные исследования
- 2 Постановка задачи
- 3 Проектирование системы
- Архитектура программного обеспечения
- Подсистема администрирования.
- Техническая архитектура
- Организационное обеспечение системы
- 4 Реализация и внедрение системы
- 10.3 Концепции автоматизации проектирования
- История развития сапр
- Классификация сапр
- Стратегическое развитие сапр Современное состояние сапр
- Направления разработки проектной составляющей сапр
- Разновидности сапр
- Математическое и информационное обеспечение сапр
- 11 Моделирование процесса управления
- 11.1 Основные определения
- Формальная запись системы с управлением
- 11.2 Модели систем автоматического управления
- Устойчивость движения систем
- Определение программного движения и управление движением
- 11.3 Модели автоматизированных систем управления
- Модели автоматизированных систем управления производственными процессами
- Модели автоматизированных систем управления предприятием