logo
Мат мод консп сум-2012

5.1 Классификация математических моделей

Появление большого количества моделей самого различного типа привело к необходимости упорядочивания, классификации моделей, что является одним из условий грамотного применения моделей. Классификация необходима для ответа на вопросы: Какого вида модель более всего подходит для решения поставленной задачи? К какому классу относится разрабатываемая модель и в чем особенности ее использования?

Единая классификация видов модели затруднительна в силу многозначности понятия "модель" в науке и технике. Ее можно проводить по различным основаниям:

- по характеру моделей (т.е. по средствам моделирования);

- по характеру моделируемых объектов;

- по сферам приложения модели (модели в технике, в физических науках, в химии, экономике, модели процессов живого, модели психики и т. п.) и его уровням ("глубине"), начиная, например, с выделения в физике модели на микроуровне (модели на уровнях исследования, касающихся элементарных частиц, атомов, молекул).

В связи с этим любая классификация методов моделирования обречена на неполноту, тем более, что терминология в этой области опирается не столько на "строгие" правила, сколько на языковые, научные и практические традиции, а еще чаще определяется в рамках конкретного контекста и вне его никакого стандартного значения не имеет (типичный пример - термин "кибернетическое" моделирование).

Первой системой математических моделей, адекватно отражающих обширный класс процессов и явлений реального мира, стала классическая механика. Одной из основных задач классической механики была задача прогнозирования движения различных тел и сред. Любая модель механического движения представляет собой систему дифференциальных уравнений относительно координат и скоростей движущегося объекта – из необходимости моделирования и прогнозирования движения возникло дифференцмальное исчисление.

Большое количество классификационных признаков породило много классификаций моделей, которые характеризуют их свойства, особенности применения, происхождения. Классификация моделей – это тоже элементарное моделирование.

При таком подходе выбор класса модели (классификация) является неотъемлемой частью построения модели - выбор класса модели можно рассматривать как выбор структуры модели - с позиций структурного моделирования.

Ниже приведена одна из возможных классификаций.

Признаки классификации

Виды математических моделей

1. Принадлежность к иерархическому уровню

  • Модели микроуровня

  • Модели макроуровня

  • Модели метауровня

2. Характер взаимоотношений со средой

  • Открытые непрерывный обмен)

  • Закрытые (слабая связь)

3. Характер отображаемых свойств объекта

  • Структурные

  • Функциональные

4. Способ представления свойств объекта

  • Аналитические

  • Алгоритмические

  • Имитационные

5. Способ получения модели

  • Теоретические

  • Эмпирические

6. Причинная обусловленность

  • Детерминированные

  • Вероятностные

7. По отношению к времени

  • Динамические

  • Статические

8. По типу уравнений

  • Линейные

  • Нелинейные

9. По множеству значений переменных

  • Непрерывные

  • Дискретные

  • Дискретно-непрерывные

10. По назначению

  • Технические

  • Экономические

  • Социальные и т.д.

Информационная модель - совокупность информации, характеризующая существенные свойства и состояния объекта, процесса, явления, а также взаимосвязь с внешним миром. В качестве информационной модели могут служить наглядные изображения (фото, кино, видео), знаки (текст, знаковое табло), графические модели (график, чертеж, блок–схема) и комбинированные изображения (мнемосхема, карта). Это модели, созданные на естественном языке и формальном языке (т.е. научном, профессиональном или специализированном). Примеры формальных моделей: все виды формул, таблицы, графы, карты, схемы и т.д.

Математическая модель - это математическое представление реальности: система математических соотношений, описывающих процесс или явление. В основу классификации математических моделей могут быть положены различные принципы отображения объекта - классификационные признаки, отражающие те или иные особенности моделируемой системы (или их сочетания).

Возможные классификационные признаки моделей: в зависимости от целей моделирования, в зависимости от способа получения моделей, в зависимости от оператора модели, в зависимости от параметров модели, в зависимости от методов реализации.

По уровню моделирования модели бывают эмпирическими, теоретическими и смешанными.

Эмпирическая — на основе эмпирических фактов, зависимостей;

Теоретическая — на основе математических описаний;

Смешанная или полуэмпирическая — использующая эмпирические зависимости и математические описания.

B зависимости от характера изучаемых процессов в системе все виды моделирования могут быть разделены на детерминированные и стохастические, статические и динамические, дискретные, непрерывные и дискретно-непрерывные.

Детерминированное моделирование отображает детерминированные процессы, т.e. процессы, в которых предполагается отсутствие всяких случайных воздействий; стохастическое моделирование отображает вероятностные процессы и события.

Статическое моделирование служит для описания поведения объекта в какой-либо момент времени, a динамическое моделирование отражает поведение объекта во времени.

Дискретное моделирование служит для описания процессов, которые предполагаются дискретными, соответственно непрерывное моделирование позволяет отразить непрерывные процессы в системах, a дискретно-непрерывное моделирование используется для случаев, когда хотят выделять наличие как дискретных, так и непрерывных процессов.

Математическое моделирование включает в себя аналитическое, имитационное и комбинированное.

Аналитическое моделирование основывается на косвенном описании реального объекта с помощью набора математических выражений, которые образуют аналитическую модель. Компьютер при аналитическом моделировании используется в качестве вычислителя.

Для аналитического моделирования характерно то, что процессы функционирования исследуемой системы записываются в виде некоторых функциональных соотношений (алгебраических, интегро-дифференциальных, конечно-разностных и т.п.) или логических условий.

Наиболее полное исследование процесса функционирования системы можно провести, если известны явные зависимости, связывающие искомые характеристики с начальными условиями, параметрами и переменными системы. Однако такие зависимости удается получить только для сравнительно простых систем. При усложнении систем исследование их аналитическим методом наталкивается на значительные трудности.

Имитационное моделирование основано на прямом описании моделируемого объекта, используя структурное подобие объекта и модели, т.е. каждому существенному, с точки зрения решаемой задачи, элементу объекта ставится в соответствие элемент модели.

В основу классификации математических моделей могут быть положены различные принципы отображения объекта - классификационные признаки, отражающие те или иные особенности моделируемой системы (или их сочетания).

Возможные классификационные признаки моделей: в зависимости от целей моделирования, в зависимости от способа получения моделей, в зависимости от оператора модели, в зависимости от параметров модели, в зависимости от методов реализации. При этом исследуемая система и ее модель могут относиться как к одному, так и к разным классам. Например, реальная система может быть подвержена воздействию случайных факторов и, соответственно, будет относиться к классу стохастических систем. Если разработчик модели считает, что влиянием этих факторов можно пренебречь, то создаваемая модель будет представлять собой детерминированную систему. Аналогичным образом возможно отображение системы с непрерывным временем смены состояний в модель с дискретными переходами и т. д.

Классификация в зависимости от целей моделирования.

Любая система может представляться некоторым набором, отличающихся друг от друга, моделей. Отличия могут содержаться в степени детализации и учёте различных особенностей режимов функционирования. Могут отражаться некоторые грани сущности системы, можно ориентироваться на анализ некоторых наборов свойств. Поэтому разработке модели, естественно, предшествует постановка (формулировка) цели моделирования. По классификационному признаку:

- «установление законов изменения параметров модели» - описательные модели;

- «изучение преобразования объектом входных сигналов» - функциональные модели;

- «изучение внутренней структуры объекта» - структурные модели;

- «определение оптимальных параметров объекта или режима управления объектом» - оптимизационные модели;

- «принятие эффективных управленческих решений»- управленческие модели.

Описательные модели являются реализацией содержательных и концептуальных моделей – позволяют определять параметры модели в зависимости от принятых условий и гипотез.

Функциональные модели отражают происходящие физические, механические, химические, информационные и др. процессы. Комбинированные структурно-функциональные модели отражают устройство и функционирование объекта.

Структурные модели – отражают устройство объекта и связи (в том числе типы связей) между его элементами.

В структурной модели можно выделить два типа - топологическую и геометрическую модели.

Топологическая модель отражает состав объекта и связи между его элементами. Такая модель обычно строится на основании структурной схемы и имеет форму графов, таблиц, матриц, списков.

Возможные типы связей: в материаловедении – типы кристаллических решеток и их симметричность, в информационных системах – направление и интенсивность передачи информации, организационных системах – иерархия в процессе принятия решений и распределение ответственности за решения.

Геометрическая модель в дополнение к топологической содержит сведения о форме и размерах объекта и его элементах, об их взаимном расположении.

По отношению к размерности пространства модели могут быть одномерными, двумерными, трехмерными. В геометрическую математическую модель обычно входят совокупность уравнений линий и поверхностей, а также соотношения, определяющие принадлежность областей пространства телу или элементу.

Оптимизационные модели содержат свободные параметры или функции (оптимизируемые параметры, параметры режимов управления), управление ними (их изменение) выбирается из условия достижения системой заданной цели - заданного критерия (критериев) эффективности выполнения системой своих задач.

В оптимизационных можно выделить управленческие модели. Из управленческих моделей можно выделить кибернетические модели – имеется несколько субъектов управления, обладающих собственными целями (модели используются для разрешения конфликтных ситуаций).

Одним из классификационных признаков моделируемой системы является мощность множества состояний моделируемой системы. По этому признаку системы делят на статические и динамические. Система называется статической, если множество ее состояний содержит один элемент. Если состояний больше одного, или они могут изменяться во времени, система называется динамической. Процесс смены состояний называется движением системы.

Различают два основных типа динамических систем: с дискретным (множество состояний конечно или счетно) или с непрерывным множеством состояний.

В детерминированных системах новое состояние зависит только от времени и текущего состояния системы. Другими словами, если имеются условия, определяющие переход системы в новое состояние, то для детерминированной системы можно однозначно указать, в какое именно состояние она перейдет.

Для стохастической системы можно указать лишь множество возможных состояний перехода и, в некоторых случаях, - вероятностные характеристики перехода в каждое из этих состояний.

Схема классификации систем важна не сама по себе. На этапе разработки концептуальной модели она, во-первых, позволяет уточнить цели и задачи моделирования и, во-вторых, облегчает переход к этапу формализации модели. Кроме того, на этапе оценки качества разработанной модели, знание классификационных признаков дает возможность оценить степень ее соответствия первоначальному замыслу разработчика.

Исследуемая система и ее модель могут относиться как к одному классу, так и к разным классам. Например, реальная система может быть подвержена воздействию случайных факторов и, соответственно, будет относиться к классу стохастических систем. Если разработчик модели считает, что влиянием этих факторов можно пренебречь, то создаваемая модель будет представлять собой детерминированную систему. Аналогичным образом возможно отображение системы с непрерывным временем смены состояний в модель с дискретными переходами и т. д.

Классификация в зависимости от способа получения моделей

В зависимости от способа получения выделяются теоретические и эмпирические модели.

Теоретические модели получают в результате изучения свойств систем, явлений, процессов, эмпирические модели являются итогом обработки результатов наблюдений внешних проявлений этих свойств и процессов.

Среди теоретических моделей можно выделить три группы моделей – феноменологические, асимптотические и модели ансамблей.

Феноменологические модели - построенные по результатам прямого наблюдения объекта, явления, его осмысливания.

Асимптотические модели - построенные в результате процесса дедукции, как частный случай более общей модели.

Модели ансамблей - построенные в результате обобщения (синтеза) отдельных моделей (процесс индукции).

Такие модели не могут быть получены путем механического объединения моделей отдельных объектов в модель системы, поскольку внутренние свойства системы при объединении объектов могут изменяться (например, в социально-экономических системах). Свойство каждого объекта исследуются с учётом взаимодействия его с другими объектами системы.

Классификация в зависимости от параметров модели

По классификационному признаку:

- «состав параметров» - дискретные, непрерывные, качественные, количественные, смешанные модели;

- «вид используемой информации» - детерминированные (каждому параметру соответствует конкретное число или функция) или неопределенные (стохастические - значения всех или некоторых параметров определяются случайными величинами, нечеткие - значения всех или некоторых параметров описываются функциями принадлежности соответствующему нечеткому множеству, случайные, нечеткие) модели;

- по отношению ко времени – статические и динамические (стационарные и нестационарные):

- по отношению к размерности пространства – одномерные, двухмерные, трехмерные.

Классификация в зависимости от методов реализации модели.

По квалификационному признаку «вид выходных зависимостей» - аналитические (алгебраические и приближенные) и алгоритмические (численные и имитационные) модели.

В аналитических моделях устанавливаются формульные, аналитические зависимости между параметрами системы. Для описания этих зависимостей разработан язык алгебраических, дифференциальных, интегральных и др. уравнений. В терминах аналитических моделей поставлены и решены достаточно простые управленческие задачи, в основном планирования на макроинтервалах времени. Эти модели можно получить, например, в рамках математического программирования (линейное, целочисленное, нелинейное, динамическое, стохастическое) и теории массового обслуживания.

Для задач, требующих учета большого количества факторов, в том числе и случайных или нечётких (неопределённых), разработаны методы имитационного и нечёткого моделирования.

Аналитические модели за счет огрубления действительности позволяют сосредоточить внимание на существе явления, его основных закономерностях, а уточнение и конкретизация решений выполняется на статистических моделях.