3.1 Модель состояния системы Состояние системы и ее функционирование
Состояние системы - это набор параметров системы, определяющий характер ее функционирования и значение выходной величины на определенном временном интервале.
Состояние системы характеризуется перечнем всех ее свойств и текущими (обычно динамическими) значениями каждого из этих свойств. Перечень свойств системы является, как правило, статическим, поскольку эти свойства составляют неизменяемую ее основу.
Любое происшествие, которое может быть причиной изменения состояния системы, называется событием. Изменение состояний называется переходом.
Если хоть одна характеристика системы изменится, это будет новое состояние. Модель конкретного состояния объекта ("моментальная фотография") – статическая модель. Пример: модель структуры.
Пусть выбран некоторый физический параметр (чаще всего время) такой, что различные состояния соответствуют разным его значениям. Набор состояний - это еще не процесс.
Процесс - набор состояний системы, соответствующий упорядоченному изменению (непрерывному или дискретному) некоторого параметра, определяющего характеристики (свойства) системы - параметра процесса.
Пример: робот-манипулятор. Серия фотографий в разных точках пространства, сделанных наугад или перемешанных – это набор состояний, но еще не процесс. Последовательные во времени движения – процесс.
В системе автоматизированного проектирования процесс проектирования как движение от формулировки задачи к чертежу – основная функция системы.
Функционирование - процессы, которые происходят в системе, стабильно реализующей фиксированную цель. Функционирование системы проявляется в ее переходе из одного состояния в другое или в сохранении какого-либо состояния в течение определенного периода времени.
Кроме основных функциональных свойств компонента, необходимых для выполнения системой целевых задач (свойства первого порядка), компонент привносит с собой в систему нежелательные свойства (свойства второго порядка).
Объект может только менять состояние, вести себя, управляться или становиться в определенное отношение к другим объектам. Иначе говоря, свойства, которые характеризуют объект и его поведение, остаются неизменными.
Например, лифт характеризуется теми неизменными свойствами, что он может двигаться вверх и вниз, оставаясь в пределах шахты. Любая модель должна учитывать эти свойства лифта, так как они входят в его определение.
Функционирование системы проявляется в ее переходе из одного состояния в другое или в сохранении какого-либо состояния в течение определенного периода времени. То есть, поведение системы - это ее функционирование во времени. Пример функционирования: космическая система наблюдения Земли функционирует, наблюдая за заданными объектами с определенной периодичностью.
В реальном мире все без исключения объекты изменяются во времени. Любой объект стремится перейти в некоторое равновесное состояние (принцип устойчивости) как с окружающей средой, так и между отдельными элементами самого объекта. Нарушение этого равновесия приводит к изменениям различных параметров объекта и его переходу в новое равновесное состояние.
Пример параметров этого процесса: изменение во времени линейных, угловых координат, температуры, давления.
Для обоснования принятия решения о наилучшем способе достижения системой заданной цели функционирования необходимо на моделях исследовать различные ситуации, которые могут возникнуть при функционировании системы. Для изучения действий системы разрабатывается модель функционирования (функциональная модель), которая позволит прогнозировать процесс функционирования по заданным начальному состоянию системы и параметрам процесса.
При построении модели функционирования исходя из содержательной постановки задачи определяются:
- основные действия системы, необходимые для выполнения цели (цель действия, описание действия, способ выполнения действия);
- основные компоненты системы, соответствующие действиям;
- основные условия функционирования - интервал времени функционирования, множества входных и выходных воздействий и области их изменения, множества характеристик состояния системы и области их возможных изменений.
В функциональной модели отражены происходящие в системе процессы (физические, химические, механические, информационные и др.), связи параметров системы с внешний средой - описываются свойства системы и ее поведение в пространстве и во времени под влиянием тех или иных воздействий. С помощью нее определяются оптимальные режимы функционирования системы и ее элементов в различных условиях внешней среды и оптимальная организация взаимодействия элементов.
Состояние системы может быть представлено набором из n параметров, каждому состоянию системы соответствует точка в n-мерном пространстве состояний системы, функционирование системы проявляется в перемещении этой точки по некоторой траектории в пространстве состояний (задается начальным состоянием).
Если хоть одна характеристика системы изменится, это будет новое состояние. Модель конкретного состояния объекта ("моментальная фотография") – статическая модель. Пример: модель структуры.
Состояние системы может быть описано ее обобщенными координатами (совокупность параметров, достаточная для определения положения системы) и обобщенными скоростями (производные параметров системы по параметру процесса - времени). Трехмерное представление пространства состояний (фазового пространства) приводится на рисунке.
С остояние системы изображается в виде точки с этими координатами в некотором условном фазовом пространстве. По осям пространства могут лежать любые параметры системы – в общем случае фазовое пространство многомерно.
Фазовые координаты системы - набор численных значений параметров состояния системы.
Для символьной записи процесса изменения состояния системы введем многомерную (по числу исследуемых характеристик) величину z, описывающую их конкретные значения. Все множество возможных величин – Z, z∈Z.
Введем параметр процесса t, множество его значений T, t∈T.
Опишем z как функцию этого параметра z = z (t).
Координаты z1, z2, . . . , zn – координаты состояния (фазовые координаты). Z (t) – вектор переменных состояния.
Z(tф) – вектор состояния (фазовый вектор) в фиксированный момент t = tф.
Модель содержит: описание множества возможных состояний и описание закона, в соответствии с которым система переходит из одного состояния в другое.
Тогда процесс Stot есть некоторое правило перехода от ситуации со значением параметра to к ситуации со значением t > t0 через все его промежуточные (непрерывные или дискретные) значения:
Stot (z (to)) = z (t), z∈Z, t∈T.
Каждому элементу t множества Т ставится в соответствие вполне определенный элемент z другого множества Z, т.е. в виде отображения z (t) или
T → Z: z (t) ∈Z, t∈T.
Функционирование системы во времени рассматривается как процесс перехода ее из состояния в состояние: состояние системы изменяется как функция времени z (t), называемая фазовой траекторией.
Функции z (t) (или их вероятностные характеристики) могут зависеть от ряда параметров рm, m = 1, 2, . . . , m*, р ∈ Р.
В общем случае функции z (t) представляют собой реализации случайных функций Z (t) с совокупностью многомерных законов распределения L[Z (t)].
Состояние системы может определяться набором действительных чисел. Например, положение самолета в данный момент времени можно описать вектором фазовых координат (z1, z2, z3), где z1 – наклонная дальность, z2 - азимут, z3 - угол места.
В начальный момент времени t0 состояния z имеют значения, равные z0 (в общем случае задаются законом распределения L0[Z (t0)]).
В любой момент времени состояние объекта определяет набор свойств (обычно статический) объекта и текущие (обычно динамические) значения этих свойств. Под "свойствами" подразумевается совокупность всех связей и элементов объекта.
Статическая модель "черного ящика" - свойства системы не изменяются во времени.
При построении статической модели отображаются свойства системы, не зависящие от времени (модели "черного ящика" и структуры системы).
Следующий шаг состоит в том, чтобы конкретнее отобразить происходящие изменения во времени: различаются части, этапы происходящего процесса, рассматриваются их взаимосвязи. Например, динамический вариант "черного ящика" – описание изменения состояния "ящика" во времени (от начального до конечного состояния).
В процессе функционирования может изменяться модель состава: включаются новые элементы в некоторой последовательности действий.
Пример: сетевой график производства – графы сетевой структуры. Вершины графа – выполняемые производственные операции, ребра указывают, какие операции не могут начаться, пока не выполнятся предыдущие. Длительности операций задаются длинами или весами ребер, что позволяет находить на графе "критические пути", т.е. последовательность операций, от которых зависит ритмичность всей работы.
В динамической модели "черного ящика" задаются процессы на входах и выходах. Рассматривая выход у (t) системы (это может быть вектор) как ее реакцию на управляемые u(t) и неуправляемые ν(t) входы x (t) = {u(t), ν(t)}, можно модель "черного ящика" выразить как совокупность двух процессов: X T = { x (t)} и Y T = { у (t)}, t ∈T.
Если считать у (t) результатом некоторого преобразования Ф процесса x(t) в "черном ящике", т.е. у (t) = Ф (x(t)), то модель "черного ящика" предполагает, что это преобразование неизвестно.
- 1 Методологические основы моделирования сложных систем
- 1.1 Системность
- Понятия общей теории систем
- Определение понятия системы
- Основные свойства, обязательные для любой системы.
- Взаимодействие и взаимозависимость системы и внешней среды.
- Определение понятий элементов, связей, функций, внешней среды системы. Элемент
- Внешняя среда
- Функции системы
- Сложность систем
- Системный подход
- Классификация систем
- Развитие искусственной системы и ее жизненный цикл
- 1.2 Моделирование
- Общая методология моделирования
- Основные принципы моделирования:
- Процесс моделирования
- Анализ и синтез в моделировании
- Примеры сложных систем Космическая система наблюдения Земли как сложная техническая система Задачи космической системы наблюдения Земли
- Состав и структура космической системы наблюдения Земли
- 2 Построение математических моделей
- 2.1 Математическая модель, математическое моделирование – основные понятия, термины и определения
- Цели математического моделирования
- 2.2 Общие методы построения математической модели
- Микроподход и макроподход в исследованиях системы.
- Формальная запись модели системы
- Понятие вариационных принципов
- Модульное построение моделей
- 2.3 Требования к построению модели
- Адекватность и достоверность модели
- Равнозначимость внешнего и внутреннего правдоподобия
- Анализ чувствительности модели
- Пример анализа на чувствительность экономической задачи
- 3 Математические модели состояния и структуры системы
- 3.1 Модель состояния системы Состояние системы и ее функционирование
- Формализация процесса функционирования системы
- 3.2 Модель структуры системы Основные понятия структуры системы
- Модель состава и структуры системы
- Методология моделирования структуры системы
- Виды структур
- Формирование структуры модели с позиций структурного моделирования.
- Построение структурных моделей
- 3.3 Модель процесса функционирования
- Установление функциональных зависимостей
- Неопределенность функционирования системы
- Пути уменьшения неопределенностей
- Основные требования к модели процесса функционирования
- Анализ функционирования, анализ структуры технической системы
- Функционально – физический анализ технических объектов.
- Пример разработки моделей деятельности организации
- Пример функционально – физического анализа технических объектов
- Конструкция бытовой электроплитки
- Функционально стоимостной анализ.
- 4 Этапы построения моделей
- 4.1 Постановка задачи моделирования
- Разработка содержательной модели
- Разработка концептуальной модели
- Описание внешних воздействий
- Декомпозиция системы
- Подготовка исходных данных для математической модели
- Содержание концептуальной модели
- 4.2 Разработка математической модели
- Разработка функциональных соотношений
- Выбор метода решения задачи
- Проверка и корректировка модели
- Анализ чувствительности модели
- Проверка адекватности модели
- Контроль модели
- Корректировка модели
- Уточнение модели проектируемого объекта
- Реализация математической модели в виде программ для эвм
- 4.3 Практическое использование построенной модели и анализ результатов моделирования
- Примеры построения моделей Математическая реставрация Тунгусского феномена
- 1. Сбор информации о явлении, выдвижение гипотез.
- 2. Содержательная постановка задачи исследования явления.
- 3. Математическая постановка задачи.
- 4. Анализ результатов.
- 5. Проверка адекватности модели – сравнение с натурным экспериментом.
- 6. Анализ результатов.
- Прогноз климатических изменений
- 1. Содержательная постановка задачи
- 2. Концептуальная постановка. Построение математической модели.
- 3. Проведение вычислительного эксперимента.
- 4. Анализ результатов вычислительного эксперимента.
- 5 Виды математических моделей
- 5.1 Классификация математических моделей
- Пример представления модели различной сложности и классификации.
- 5.2 Классификация математических моделей в зависимости от оператора модели
- Линейные и нелинейные модели
- Обыкновенные дифференциальные модели
- 5.3 Классификация математических моделей в зависимости от параметров модели Непрерывные и дискретные модели
- Детерминированные и неопределенные модели
- Дискретно-детерминированная модель
- Статические и динамические модели
- Стационарные и нестационарные модели.
- Формализация системы в виде автомата
- Формализация системы в виде агрегата
- Моделирование процесса функционирования агрегата
- Моделирование агрегативных систем
- Модель сопряжения элементов
- 6 Математические модели распределения ресурсов в исследовании операций
- 6.1 Моделирование операций распределения ресурсов
- Формулировка задачи математического программирования
- 6.2 Модели линейного программирования
- Формулировка общей задачи линейного программирования.
- Типовые задачи линейного программирования
- Транспортная задача.
- Задача коммивояжера.
- Задача о ранце.
- Общая задача теории расписаний.
- Примеры сведения практических задач к канонической транспортной задаче
- 6.3 Распределительные задачи линейного программирования
- Примеры распределительных задач.
- Распределение транспортных единиц по линиям
- Выбор средств доставки грузов.
- Задача о назначениях
- Экономическая интерпретация задач линейного программирования.
- Перевозки взаимозаменяемых продуктов
- Перевозка неоднородного продукта на разнородном транспорте.
- 7 Математические модели физических явлений и процессов. Универсальность моделей
- 7.1 Математические модели на основе фундаментальных законов
- Теоретический метод составления математических моделей
- Основные фундаментальные законы механики
- Работа, энергия, мощность
- 7.2 Уравнения движения
- Динамика поступательного движения.
- 7.3 Уравнения состояния
- Термодинамическая система.
- Упругие свойства твердых тел.
- Жидкости.
- 7.4 Универсальность моделей
- Модели на основе аналогий
- Типовые математические модели элементов и подсистем
- Модель колебательного процесса
- Модель консервативной системы.
- Электрическая подсистема.
- Модели элементов гидравлических систем
- Модели элементов пневматических систем
- 8 Моделирование производственных процессов
- 8.1 Модели систем массового обслуживания
- Основные элементы систем массового обслуживания.
- Характеристики потока
- Классификация смо
- Оценка эффективности смо
- Аналитические и статистические модели
- 8.2 Модели производственных процессов
- Дискретный производственный процесс
- Непрерывный производственный процесс
- Агрегатное представление производственного процесса
- Имитационное моделирование процессов функционирования
- Формализация основных операций производственного процесса Формализованная схема дискретного производственного процесса.
- Формализация отклонения течения производственного процесса от нормального
- Моделирование комплексного процесса обработки, сборки и управления при поточном производстве
- Формализованная схема непрерывного производственного процесса.
- 9 Синтез модели (проекта) системы
- 9.1 Проектирование системы как процесс создания (синтеза) ее модели
- 9.2 Методология проектирования
- Типовые проектные процедуры формирования облика системы
- 9.3 Эффективность системы Понятие эффективности системы
- Формирование модели цели системы
- Выбор критериев и показателей эффективности
- Основные принципы выбора критериев эффективности:
- Проблемы многокритериальности
- 9.4 Технология проектирования
- 9.5 Принятие решений в проектировании
- Выбор в условиях неопределенности
- Моделирование принятия решения
- Прогнозирование в принятии решений
- 9.6 Анализ инвестиционной привлекательности системы Основные типы инвестиций.
- Основные экономические концепции инвестиционного анализа.
- Состав работ при инвестиционном проектировании
- Конкурентоспособность проектируемой системы Оценка потенциальной емкости рынка и потенциального объема продаж
- Оценка конкурентоспособности
- Методы оценки эффективности инвестиций
- Метод определения чистой текущей стоимости.
- Метод расчета рентабельности инвестиций
- Метод расчета внутренней нормы прибыли
- Расчет периода окупаемости инвестиций
- Маркетинг и управление проектом
- Задачи управления проектами
- 9.7 Особенности синтеза модели (проекта) технических систем Этапы проектирования
- Особенности проектирования адаптивных систем
- Моделирование функционирования технической системы Особенности построения моделей при проектировании
- Формирование технического облика системы
- Формирование структуры системы
- Выбор основных проектных параметров системы
- Формирование множества вариантов системы
- 10 Информационное обеспечение синтеза системы
- 10.1 Основные задачи и типы информационных систем Общие свойства информационных систем
- Файл-серверные информационные системы
- Клиент-серверные информационные системы
- Архитектура Интернет/Интранет
- Хранилища данных и системы оперативной аналитической обработки данных
- 10.2 Особенности проектирования информационных систем
- Схемы разработки проекта
- 1. Предпроектные исследования
- 2 Постановка задачи
- 3 Проектирование системы
- Архитектура программного обеспечения
- Подсистема администрирования.
- Техническая архитектура
- Организационное обеспечение системы
- 4 Реализация и внедрение системы
- 10.3 Концепции автоматизации проектирования
- История развития сапр
- Классификация сапр
- Стратегическое развитие сапр Современное состояние сапр
- Направления разработки проектной составляющей сапр
- Разновидности сапр
- Математическое и информационное обеспечение сапр
- 11 Моделирование процесса управления
- 11.1 Основные определения
- Формальная запись системы с управлением
- 11.2 Модели систем автоматического управления
- Устойчивость движения систем
- Определение программного движения и управление движением
- 11.3 Модели автоматизированных систем управления
- Модели автоматизированных систем управления производственными процессами
- Модели автоматизированных систем управления предприятием