10.1 Основные задачи и типы информационных систем Общие свойства информационных систем
Можно выделить, по крайней мере, два свойства, которые являются общими для всех информационных систем и которые и определяют систему как информационную.
Во-первых, любая информационная система предназначена для сбора, хранения и обработки информации. Поэтому в основе любой информационной системы лежит среда хранения и доступа к данным, которая должна обеспечивать уровень надежности хранения и эффективность доступа.
Во-вторых, информационные системы ориентируются на конечного пользователя (чаще всего непрофессионального в компьютерном отношении), что требует простого, удобного, легко осваиваемого развитого интерфейса, который должен предоставить конечному пользователю все необходимые для его работы функции (для вычислительных программ такой интерфейс необязателен).
Информационные системы в зависимости от конкретной области применения могут очень сильно различаться по своим функциям, архитектуре, реализации.
Общие требования к любым информационным системам:
- надежность и продолжительность хранения информации, в том числе, хранение данных, обладающих разными структурами;
- открытость системы и требование ее развития (могут появиться новые функции, для выполнения которых требуются дополнительные данные с новой структурой, при этом вся накопленная ранее информация должна остаться сохранной).
Решение этих задач определяется конкретными требованиями к информационной системе.
Проектирование информационных систем как сложных систем должно подчиняться тем же принципам системного подхода с учетом специфических особенностей процесса проектирования таких систем.
Особенности проектирования информационных систем определяются сложностью взаимодействия между создателями информационной системы – специалистами в программировании, но не в конкретной предметной области, для которой создается информационная система, и заказчиками – специалистами в предметной области, но не в программировании.
Опыт создания больших информационных систем позволили к настоящему времени обобщенно сформулировать основные особенности, задачи информационных систем и требования к системам.
Прежде всего, это сложность взаимодействия между создателями информационной системы – специалистами в программировании, но не в той предметной области, для которой ними создается информационная система, и заказчиками – специалистами в предметной области, но отнюдь не в программировании.
Информационная система может быть создана только в результате взаимопонимания между разработчиками и заказчиками, в результате чего определяются и наполняются содержанием основные понятия информационной системы как сложной системы: определяются функции системы в целом и ее подсистем, ее границы, формируются требования к системе.
Примеры больших информационных систем
Обеспечение управления бизнес-процессами.
Задачи: оценить состояние дел, проанализировать положительные и отрицательные тенденции, определить перспективы развития бизнеса.
Функции:
- контроль продажи продукции (большая номенклатура продукции и значительное количество потребителей);
- подготовка информации для формирования бизнес-планов;
- обеспечение информационных потребностей отраслей, малых и средних предприятий (законодательные базы, анализ игроков на рынке и т.п.).
Геоинформационные системы.
Задачи: обеспечение достоверной информацией, координация работ, формирование планов развития.
Функции:
Обеспечение управлением городским хозяйством: объектно-ориентированная электронная карта города, состояние объектов недвижимости, градостроительство, инженерные коммуникации (водное хозяйство, канализация, автодороги), состояние экологии.
Обеспечение управлением коммуникациями региона (железные дороги, автодороги, линии электропередачи и др.): предоставление оперативных данных по объектам инфрастуктуры, управление эксплуатацией, выполнение инженерных и проектных расчетных работ, проектирование развития и реконструкции.
Наблюдения Земли из космоса – совокупность функционально взаимосвязанных космических аппаратов и наземных средств, предназначенных для решения целевых задач. Назначение системы (например, при мониторинге пожаров): предоставление оперативных данных по объектам наблюдения, контроль состояния объектов.
Требования к системе: предоставление общей и детальной оперативной информации, обеспечение оперативного анализа данных для аналитических исследований, обеспечение моделирования процессов.
Конкретные задачи информационной системы зависят от ее прикладной области: банковское дело, страхование, медицина, транспорт, образование, управление и т.д., которые и определяют облик системы. Но можно выделить некоторое количество задач, не зависящих от специфики прикладной области – задачи, связанные с общими чертами информационных систем.
Основные задачи, общие для больших информационных систем - обеспечение изучения больших объемов взаимосвязанных данных при помощи быстрого интерактивного отображения информации на разных уровнях детализации с различных точек зрения в соответствии с представлениями пользователя.
Стимулом к развитию информационных систем явилась необходимость обеспечения крупного и среднего бизнеса эффективной системой поддержки принятия решений (СППР), которая информационно обеспечивает решение трех основных традиционных управленческих задач: где мы находимся?, куда мы хотим придти?, как этого достичь?
Современные информационные технологии при поиске ответов на эти вопросы позволяют формулировать и решать следующие классы задач (функций).
Аналитические – вычисление заданных показателей и статистических характеристик деятельности на основе информации из базы данных.
Визуализация данных – наглядное графическое и табличное представление информации.
Получение новых знаний – определение взаимосвязей и взаимозависимостей процессов на основе существующей информации в базе данных, выявление закономерностей и тенденций развития.
Имитационные – проведение на ЭВМ экспериментов с математическими моделями, описывающими поведение сложных систем в течение заданного интервала времени (применяются для анализа возможных последствий принятия решения).
Синтез управления – для определения допустимых управляющих воздействий, обеспечивающих достижение заданной цели (применяются для оценки достижимости заданных целей, определения множества управляющих воздействий, приводящих к заданной цели).
Оптимизационные – интеграция имитационных, управленческих методов моделирования и прогнозирования для выбора на множестве возможных управлений тех из них, которые обеспечивают наиболее эффективное (для заданного критерия) достижение цели.
Обобщение основных задач информационной системы и требований к системе позволяют понятие информационной системы сформулировать в следующем виде.
Информационная система – комплекс методологических, логических, программных, технических информационных, организационных средств, поддерживающих процессы функционирования информатизируемого объекта.
Процесс проектирования информационной системы организовывается в обеспечение основной функции системы - обеспечения ввода, хранения, обновления и удаления данных. При этом должно выполняться основное требование – обеспечение соответствия хранимой информации состоянию предметной области.
Поддержка этих функций существенно повышает уровень требований к СУБД, особенно для групповых и корпоративных систем (автоматическая согласованность действий при обеспечении возможности работы с нескольких рабочих мест различных групп пользователей с различными функциями) - все результаты, получаемые от информационной системы должны соответствовать согласованному состоянию базы данных, т.е. быть достоверными и непротиворечивыми.
Функции и задачи информационной системы определяют ее архитектурные решения.
Проектирование и разработка информационной системы может базироваться на разных архитектурных решениях.
Возможные архитектуры информационных систем: традиционное использование выделенных файл-серверов или клиент-серверов, корпоративные информационные системы, базирующиеся на технологии Internet (Intranet-приложения), информационные системы, основанные на концепции "хранилища данных" - интегрированной информационной среды, включающей разнородные информационные ресурсы.
Как и любая классификация, эта классификация архитектур информационных систем не является абсолютно жесткой – в любой конкретной информационной системе можно найти влияния нескольких общих архитектурных решений.
- 1 Методологические основы моделирования сложных систем
- 1.1 Системность
- Понятия общей теории систем
- Определение понятия системы
- Основные свойства, обязательные для любой системы.
- Взаимодействие и взаимозависимость системы и внешней среды.
- Определение понятий элементов, связей, функций, внешней среды системы. Элемент
- Внешняя среда
- Функции системы
- Сложность систем
- Системный подход
- Классификация систем
- Развитие искусственной системы и ее жизненный цикл
- 1.2 Моделирование
- Общая методология моделирования
- Основные принципы моделирования:
- Процесс моделирования
- Анализ и синтез в моделировании
- Примеры сложных систем Космическая система наблюдения Земли как сложная техническая система Задачи космической системы наблюдения Земли
- Состав и структура космической системы наблюдения Земли
- 2 Построение математических моделей
- 2.1 Математическая модель, математическое моделирование – основные понятия, термины и определения
- Цели математического моделирования
- 2.2 Общие методы построения математической модели
- Микроподход и макроподход в исследованиях системы.
- Формальная запись модели системы
- Понятие вариационных принципов
- Модульное построение моделей
- 2.3 Требования к построению модели
- Адекватность и достоверность модели
- Равнозначимость внешнего и внутреннего правдоподобия
- Анализ чувствительности модели
- Пример анализа на чувствительность экономической задачи
- 3 Математические модели состояния и структуры системы
- 3.1 Модель состояния системы Состояние системы и ее функционирование
- Формализация процесса функционирования системы
- 3.2 Модель структуры системы Основные понятия структуры системы
- Модель состава и структуры системы
- Методология моделирования структуры системы
- Виды структур
- Формирование структуры модели с позиций структурного моделирования.
- Построение структурных моделей
- 3.3 Модель процесса функционирования
- Установление функциональных зависимостей
- Неопределенность функционирования системы
- Пути уменьшения неопределенностей
- Основные требования к модели процесса функционирования
- Анализ функционирования, анализ структуры технической системы
- Функционально – физический анализ технических объектов.
- Пример разработки моделей деятельности организации
- Пример функционально – физического анализа технических объектов
- Конструкция бытовой электроплитки
- Функционально стоимостной анализ.
- 4 Этапы построения моделей
- 4.1 Постановка задачи моделирования
- Разработка содержательной модели
- Разработка концептуальной модели
- Описание внешних воздействий
- Декомпозиция системы
- Подготовка исходных данных для математической модели
- Содержание концептуальной модели
- 4.2 Разработка математической модели
- Разработка функциональных соотношений
- Выбор метода решения задачи
- Проверка и корректировка модели
- Анализ чувствительности модели
- Проверка адекватности модели
- Контроль модели
- Корректировка модели
- Уточнение модели проектируемого объекта
- Реализация математической модели в виде программ для эвм
- 4.3 Практическое использование построенной модели и анализ результатов моделирования
- Примеры построения моделей Математическая реставрация Тунгусского феномена
- 1. Сбор информации о явлении, выдвижение гипотез.
- 2. Содержательная постановка задачи исследования явления.
- 3. Математическая постановка задачи.
- 4. Анализ результатов.
- 5. Проверка адекватности модели – сравнение с натурным экспериментом.
- 6. Анализ результатов.
- Прогноз климатических изменений
- 1. Содержательная постановка задачи
- 2. Концептуальная постановка. Построение математической модели.
- 3. Проведение вычислительного эксперимента.
- 4. Анализ результатов вычислительного эксперимента.
- 5 Виды математических моделей
- 5.1 Классификация математических моделей
- Пример представления модели различной сложности и классификации.
- 5.2 Классификация математических моделей в зависимости от оператора модели
- Линейные и нелинейные модели
- Обыкновенные дифференциальные модели
- 5.3 Классификация математических моделей в зависимости от параметров модели Непрерывные и дискретные модели
- Детерминированные и неопределенные модели
- Дискретно-детерминированная модель
- Статические и динамические модели
- Стационарные и нестационарные модели.
- Формализация системы в виде автомата
- Формализация системы в виде агрегата
- Моделирование процесса функционирования агрегата
- Моделирование агрегативных систем
- Модель сопряжения элементов
- 6 Математические модели распределения ресурсов в исследовании операций
- 6.1 Моделирование операций распределения ресурсов
- Формулировка задачи математического программирования
- 6.2 Модели линейного программирования
- Формулировка общей задачи линейного программирования.
- Типовые задачи линейного программирования
- Транспортная задача.
- Задача коммивояжера.
- Задача о ранце.
- Общая задача теории расписаний.
- Примеры сведения практических задач к канонической транспортной задаче
- 6.3 Распределительные задачи линейного программирования
- Примеры распределительных задач.
- Распределение транспортных единиц по линиям
- Выбор средств доставки грузов.
- Задача о назначениях
- Экономическая интерпретация задач линейного программирования.
- Перевозки взаимозаменяемых продуктов
- Перевозка неоднородного продукта на разнородном транспорте.
- 7 Математические модели физических явлений и процессов. Универсальность моделей
- 7.1 Математические модели на основе фундаментальных законов
- Теоретический метод составления математических моделей
- Основные фундаментальные законы механики
- Работа, энергия, мощность
- 7.2 Уравнения движения
- Динамика поступательного движения.
- 7.3 Уравнения состояния
- Термодинамическая система.
- Упругие свойства твердых тел.
- Жидкости.
- 7.4 Универсальность моделей
- Модели на основе аналогий
- Типовые математические модели элементов и подсистем
- Модель колебательного процесса
- Модель консервативной системы.
- Электрическая подсистема.
- Модели элементов гидравлических систем
- Модели элементов пневматических систем
- 8 Моделирование производственных процессов
- 8.1 Модели систем массового обслуживания
- Основные элементы систем массового обслуживания.
- Характеристики потока
- Классификация смо
- Оценка эффективности смо
- Аналитические и статистические модели
- 8.2 Модели производственных процессов
- Дискретный производственный процесс
- Непрерывный производственный процесс
- Агрегатное представление производственного процесса
- Имитационное моделирование процессов функционирования
- Формализация основных операций производственного процесса Формализованная схема дискретного производственного процесса.
- Формализация отклонения течения производственного процесса от нормального
- Моделирование комплексного процесса обработки, сборки и управления при поточном производстве
- Формализованная схема непрерывного производственного процесса.
- 9 Синтез модели (проекта) системы
- 9.1 Проектирование системы как процесс создания (синтеза) ее модели
- 9.2 Методология проектирования
- Типовые проектные процедуры формирования облика системы
- 9.3 Эффективность системы Понятие эффективности системы
- Формирование модели цели системы
- Выбор критериев и показателей эффективности
- Основные принципы выбора критериев эффективности:
- Проблемы многокритериальности
- 9.4 Технология проектирования
- 9.5 Принятие решений в проектировании
- Выбор в условиях неопределенности
- Моделирование принятия решения
- Прогнозирование в принятии решений
- 9.6 Анализ инвестиционной привлекательности системы Основные типы инвестиций.
- Основные экономические концепции инвестиционного анализа.
- Состав работ при инвестиционном проектировании
- Конкурентоспособность проектируемой системы Оценка потенциальной емкости рынка и потенциального объема продаж
- Оценка конкурентоспособности
- Методы оценки эффективности инвестиций
- Метод определения чистой текущей стоимости.
- Метод расчета рентабельности инвестиций
- Метод расчета внутренней нормы прибыли
- Расчет периода окупаемости инвестиций
- Маркетинг и управление проектом
- Задачи управления проектами
- 9.7 Особенности синтеза модели (проекта) технических систем Этапы проектирования
- Особенности проектирования адаптивных систем
- Моделирование функционирования технической системы Особенности построения моделей при проектировании
- Формирование технического облика системы
- Формирование структуры системы
- Выбор основных проектных параметров системы
- Формирование множества вариантов системы
- 10 Информационное обеспечение синтеза системы
- 10.1 Основные задачи и типы информационных систем Общие свойства информационных систем
- Файл-серверные информационные системы
- Клиент-серверные информационные системы
- Архитектура Интернет/Интранет
- Хранилища данных и системы оперативной аналитической обработки данных
- 10.2 Особенности проектирования информационных систем
- Схемы разработки проекта
- 1. Предпроектные исследования
- 2 Постановка задачи
- 3 Проектирование системы
- Архитектура программного обеспечения
- Подсистема администрирования.
- Техническая архитектура
- Организационное обеспечение системы
- 4 Реализация и внедрение системы
- 10.3 Концепции автоматизации проектирования
- История развития сапр
- Классификация сапр
- Стратегическое развитие сапр Современное состояние сапр
- Направления разработки проектной составляющей сапр
- Разновидности сапр
- Математическое и информационное обеспечение сапр
- 11 Моделирование процесса управления
- 11.1 Основные определения
- Формальная запись системы с управлением
- 11.2 Модели систем автоматического управления
- Устойчивость движения систем
- Определение программного движения и управление движением
- 11.3 Модели автоматизированных систем управления
- Модели автоматизированных систем управления производственными процессами
- Модели автоматизированных систем управления предприятием