Выбор метода решения задачи
Основные методы решения задач с помощью математической модели: аналитические или численные методы, имитационное моделирование.
Аналитические методы предполагают поиск искомых величин от исходных параметров модели в виде аналитических выражений. Аналитическое выражение (формула) – совокупность действий, которые нужно проделать в определенном порядке над значением аргумента и константами, чтобы получить значение функции.
Для использования аналитических методов необходимо математическую модель преобразовать к виду явных аналитических зависимостей между характеристиками и параметрами системы и внешних воздействий. Однако это удается лишь для сравнительно простых систем и при наличии хорошо разработанной теории исследуемых объектов.
Аналитическое выражение каждой функции одного переменного строится лишь из трех действий – сложение, умножение, переход к пределу.
При использовании аналитических моделей процессы функционирования элементов сложной системы записываются в виде, некоторых функциональных соотношений (алгебраических, и: интегро-дифференциальных, конечно-разностных и т.п.) или логических условий.
Аналитическая модель может исследоваться одним из следующих способов:
- аналитически, - когда получают в общем виде явные зависимое для искомых величин;
- численно, - когда, не имея решения уравнений в общем виде применяют средства вычислительной техники, чтобы получить числовые результаты при конкретных начальных данных;
- качественно, - когда, не имея решения в явном виде, можно: найти некоторые свойства решения, например, оценить устойчивое решения и т. п.
Для получения численных результатов разрабатываются соответствующие алгоритмы, реализуемые на ЭВМ.
Аналитические методы дают возможность выявить основные зависимости и определить направления дальнейших исследований. Во имя этого иногда сознательно идут на умышленное отступление от первоначальной модели, на упрощение и загрубление ее ради получения аналитических зависимостей и возможности решения задачи хоть и приближенного, но отражающего основные закономерности.
Аналитические методы более удобны для последующего анализа результатов, но применимы лишь для относительно простых моделей.
Численные методы: первоначальная математическая модель преобразуется в систему уравнений, к которым применяется некоторый численный метод. С их помощью находятся точные решения небольшого числа частных реализаций процесса.
Общим для всех численных методов является сведение математической задачи к конечномерной. Это чаще всего достигается дискретизацией исходной задачи, т.е. переходом от функции непрерывного аргумента к функции дискретного аргумента. В результате получается приближенной решение задачи, имеющее определенную погрешность.
Выделяют три основных составляющих возникающей погрешности:
-неустранимая погрешность, связанная с неточным заданием исходных данных (начальные и граничные условия, коэффициенты и правые части уравнений;
-погрешность метода, связанная с переходом к дискретному аналогу;
-ошибка округления, связанная с конечной разрядностью чисел, представляемых в ЭВМ,
Численный метод в общем случае по своей логической структуре весьма далек как от математической модели, так и от процесса-оригинала. Логическая структура метода и характер фигурирующей информации обусловлены скорее типом тех уравнений, к которым удалось свести первоначальную математическую модель. Численный метод всегда реализуется в виде вычислительного алгоритма.
Существует огромное разнообразие численных методов: интерполяция, численное дифференцирование, численное интегрирование, решения систем линейных и нелинейных уравнений, задачи Коши и краевых задач для обыкновенных дифференциальных уравнений, интегральных уравнений, уравнений в частных производных и т.д. Это предполагает выбор метода с позиций эффективности, устойчивости, точности решения конкретной задачи (чаще всего определяется установившимися предпочтениями исследователя и его математической культурой – неформализуемо, как и вся вычислительная математика).
При моделировании сложных процессов далеко не всегда можно модель преобразовать в систему уравнений, пригодную для применения численных методов.
Для модели, сформулированной в терминах интегральных и дифференциальных уравнений функций непрерывного аргумента, осуществляется переход к дискретной модели - функции непрерывного аргумента заменяются функциями дискретного аргумента, интегральные и дифференциальные уравнения заменяются конечно-разностными. При этом интеграл заменяется конечной суммой, производная – разностным отношением, что приводит к погрешности результатов решения задачи.
Имитационное моделирование – численный метод исследования свойств системы, путем воспроизведения процесса ее функционирования с помощью вычислительного эксперимента с математической моделью системы – свойства системы определяются на основании анализа накопленного статистического материала. При имитационном моделировании динамические процессы системы – оригинала подменяются процессами, имитируемыми в абстрактной модели, но с соблюдением таких же соотношением длительностей и временных последовательностей отдельных операций.
При использовании имитационных моделей, в отличие от аналитических, в ЭВМ воспроизводится текущее функционирование системы в некотором масштабе времени. При этом требует воспроизводить входные воздействия в виде наборов чисел — реализаций процессов (а не числовых характеристик, как при аналитическом моделировании).
Одно из основных достоинств имитационных моделей — возможность моделирования даже в тех случаях, когда аналитические модели либо отсутствуют, либо (из-за сложности системы) не дают практически удобных результатов. Имитационное моделирование позволяет учесть влияние большого числа случайных и детерминированных факторов, а также сложных зависимостей при вводе в модель соответствующих элементов и операций.
При имитационном математическом моделировании явлений и процессов сохраняется их логическая структура, последовательность чередования событий во времени. Каждый акт воспроизведения течения процесса называется имитационным экспериментом.
Методами имитационного моделирования анализируется функционирование сложных систем, исследования которых практически невозможно другими методами: системы, подверженные случайным возмущениям, различные варианты управления системами, взаимодействие систем.
- 1 Методологические основы моделирования сложных систем
- 1.1 Системность
- Понятия общей теории систем
- Определение понятия системы
- Основные свойства, обязательные для любой системы.
- Взаимодействие и взаимозависимость системы и внешней среды.
- Определение понятий элементов, связей, функций, внешней среды системы. Элемент
- Внешняя среда
- Функции системы
- Сложность систем
- Системный подход
- Классификация систем
- Развитие искусственной системы и ее жизненный цикл
- 1.2 Моделирование
- Общая методология моделирования
- Основные принципы моделирования:
- Процесс моделирования
- Анализ и синтез в моделировании
- Примеры сложных систем Космическая система наблюдения Земли как сложная техническая система Задачи космической системы наблюдения Земли
- Состав и структура космической системы наблюдения Земли
- 2 Построение математических моделей
- 2.1 Математическая модель, математическое моделирование – основные понятия, термины и определения
- Цели математического моделирования
- 2.2 Общие методы построения математической модели
- Микроподход и макроподход в исследованиях системы.
- Формальная запись модели системы
- Понятие вариационных принципов
- Модульное построение моделей
- 2.3 Требования к построению модели
- Адекватность и достоверность модели
- Равнозначимость внешнего и внутреннего правдоподобия
- Анализ чувствительности модели
- Пример анализа на чувствительность экономической задачи
- 3 Математические модели состояния и структуры системы
- 3.1 Модель состояния системы Состояние системы и ее функционирование
- Формализация процесса функционирования системы
- 3.2 Модель структуры системы Основные понятия структуры системы
- Модель состава и структуры системы
- Методология моделирования структуры системы
- Виды структур
- Формирование структуры модели с позиций структурного моделирования.
- Построение структурных моделей
- 3.3 Модель процесса функционирования
- Установление функциональных зависимостей
- Неопределенность функционирования системы
- Пути уменьшения неопределенностей
- Основные требования к модели процесса функционирования
- Анализ функционирования, анализ структуры технической системы
- Функционально – физический анализ технических объектов.
- Пример разработки моделей деятельности организации
- Пример функционально – физического анализа технических объектов
- Конструкция бытовой электроплитки
- Функционально стоимостной анализ.
- 4 Этапы построения моделей
- 4.1 Постановка задачи моделирования
- Разработка содержательной модели
- Разработка концептуальной модели
- Описание внешних воздействий
- Декомпозиция системы
- Подготовка исходных данных для математической модели
- Содержание концептуальной модели
- 4.2 Разработка математической модели
- Разработка функциональных соотношений
- Выбор метода решения задачи
- Проверка и корректировка модели
- Анализ чувствительности модели
- Проверка адекватности модели
- Контроль модели
- Корректировка модели
- Уточнение модели проектируемого объекта
- Реализация математической модели в виде программ для эвм
- 4.3 Практическое использование построенной модели и анализ результатов моделирования
- Примеры построения моделей Математическая реставрация Тунгусского феномена
- 1. Сбор информации о явлении, выдвижение гипотез.
- 2. Содержательная постановка задачи исследования явления.
- 3. Математическая постановка задачи.
- 4. Анализ результатов.
- 5. Проверка адекватности модели – сравнение с натурным экспериментом.
- 6. Анализ результатов.
- Прогноз климатических изменений
- 1. Содержательная постановка задачи
- 2. Концептуальная постановка. Построение математической модели.
- 3. Проведение вычислительного эксперимента.
- 4. Анализ результатов вычислительного эксперимента.
- 5 Виды математических моделей
- 5.1 Классификация математических моделей
- Пример представления модели различной сложности и классификации.
- 5.2 Классификация математических моделей в зависимости от оператора модели
- Линейные и нелинейные модели
- Обыкновенные дифференциальные модели
- 5.3 Классификация математических моделей в зависимости от параметров модели Непрерывные и дискретные модели
- Детерминированные и неопределенные модели
- Дискретно-детерминированная модель
- Статические и динамические модели
- Стационарные и нестационарные модели.
- Формализация системы в виде автомата
- Формализация системы в виде агрегата
- Моделирование процесса функционирования агрегата
- Моделирование агрегативных систем
- Модель сопряжения элементов
- 6 Математические модели распределения ресурсов в исследовании операций
- 6.1 Моделирование операций распределения ресурсов
- Формулировка задачи математического программирования
- 6.2 Модели линейного программирования
- Формулировка общей задачи линейного программирования.
- Типовые задачи линейного программирования
- Транспортная задача.
- Задача коммивояжера.
- Задача о ранце.
- Общая задача теории расписаний.
- Примеры сведения практических задач к канонической транспортной задаче
- 6.3 Распределительные задачи линейного программирования
- Примеры распределительных задач.
- Распределение транспортных единиц по линиям
- Выбор средств доставки грузов.
- Задача о назначениях
- Экономическая интерпретация задач линейного программирования.
- Перевозки взаимозаменяемых продуктов
- Перевозка неоднородного продукта на разнородном транспорте.
- 7 Математические модели физических явлений и процессов. Универсальность моделей
- 7.1 Математические модели на основе фундаментальных законов
- Теоретический метод составления математических моделей
- Основные фундаментальные законы механики
- Работа, энергия, мощность
- 7.2 Уравнения движения
- Динамика поступательного движения.
- 7.3 Уравнения состояния
- Термодинамическая система.
- Упругие свойства твердых тел.
- Жидкости.
- 7.4 Универсальность моделей
- Модели на основе аналогий
- Типовые математические модели элементов и подсистем
- Модель колебательного процесса
- Модель консервативной системы.
- Электрическая подсистема.
- Модели элементов гидравлических систем
- Модели элементов пневматических систем
- 8 Моделирование производственных процессов
- 8.1 Модели систем массового обслуживания
- Основные элементы систем массового обслуживания.
- Характеристики потока
- Классификация смо
- Оценка эффективности смо
- Аналитические и статистические модели
- 8.2 Модели производственных процессов
- Дискретный производственный процесс
- Непрерывный производственный процесс
- Агрегатное представление производственного процесса
- Имитационное моделирование процессов функционирования
- Формализация основных операций производственного процесса Формализованная схема дискретного производственного процесса.
- Формализация отклонения течения производственного процесса от нормального
- Моделирование комплексного процесса обработки, сборки и управления при поточном производстве
- Формализованная схема непрерывного производственного процесса.
- 9 Синтез модели (проекта) системы
- 9.1 Проектирование системы как процесс создания (синтеза) ее модели
- 9.2 Методология проектирования
- Типовые проектные процедуры формирования облика системы
- 9.3 Эффективность системы Понятие эффективности системы
- Формирование модели цели системы
- Выбор критериев и показателей эффективности
- Основные принципы выбора критериев эффективности:
- Проблемы многокритериальности
- 9.4 Технология проектирования
- 9.5 Принятие решений в проектировании
- Выбор в условиях неопределенности
- Моделирование принятия решения
- Прогнозирование в принятии решений
- 9.6 Анализ инвестиционной привлекательности системы Основные типы инвестиций.
- Основные экономические концепции инвестиционного анализа.
- Состав работ при инвестиционном проектировании
- Конкурентоспособность проектируемой системы Оценка потенциальной емкости рынка и потенциального объема продаж
- Оценка конкурентоспособности
- Методы оценки эффективности инвестиций
- Метод определения чистой текущей стоимости.
- Метод расчета рентабельности инвестиций
- Метод расчета внутренней нормы прибыли
- Расчет периода окупаемости инвестиций
- Маркетинг и управление проектом
- Задачи управления проектами
- 9.7 Особенности синтеза модели (проекта) технических систем Этапы проектирования
- Особенности проектирования адаптивных систем
- Моделирование функционирования технической системы Особенности построения моделей при проектировании
- Формирование технического облика системы
- Формирование структуры системы
- Выбор основных проектных параметров системы
- Формирование множества вариантов системы
- 10 Информационное обеспечение синтеза системы
- 10.1 Основные задачи и типы информационных систем Общие свойства информационных систем
- Файл-серверные информационные системы
- Клиент-серверные информационные системы
- Архитектура Интернет/Интранет
- Хранилища данных и системы оперативной аналитической обработки данных
- 10.2 Особенности проектирования информационных систем
- Схемы разработки проекта
- 1. Предпроектные исследования
- 2 Постановка задачи
- 3 Проектирование системы
- Архитектура программного обеспечения
- Подсистема администрирования.
- Техническая архитектура
- Организационное обеспечение системы
- 4 Реализация и внедрение системы
- 10.3 Концепции автоматизации проектирования
- История развития сапр
- Классификация сапр
- Стратегическое развитие сапр Современное состояние сапр
- Направления разработки проектной составляющей сапр
- Разновидности сапр
- Математическое и информационное обеспечение сапр
- 11 Моделирование процесса управления
- 11.1 Основные определения
- Формальная запись системы с управлением
- 11.2 Модели систем автоматического управления
- Устойчивость движения систем
- Определение программного движения и управление движением
- 11.3 Модели автоматизированных систем управления
- Модели автоматизированных систем управления производственными процессами
- Модели автоматизированных систем управления предприятием