Определение понятия системы
Определение понятия "модель системы" предполагает, прежде всего, определение понятия "система".
Определение понятия системы – это тоже модель (лингвистическая) наших представлений о системе. В такой постановке понятия системы и модели системы взаимосвязаны.
Различные системы, встречающиеся в природе и обществе, имеют различное строение и характеризуются различными признаками. Среди них, прежде всего, необходимо выделить открытые системы, которые взаимодействуют с окружающей их средой, обмениваясь с ней веществом и энергией, иерархически организованные системы, содержащие в своем составе подсистемы различной степени общности и автономности.
Пример живых организмов. Простейшими их элементами служат клетки. Последние образуют подсистемы, называемые тканями, которые, в свою очередь, составляют органы живого тела. Каждая из этих подсистем обладает относительной автономностью, но подсистемы низшего уровня подчинены подсистемам высшего уровня. В целом же они составляют единый, целостный живой организм, которым управляет центральная нервная система.
Разнообразие систем в различных предметных областях (различной языковой среде) – философия, естествознание, математика, техника приводят к различным определениям понятия системы.
Термин «система», употребляемый в современной практике, имеет множество значений и смысловых нюансов. В настоящее время вообще не существует удовлетворительных, достаточно широко принятых понятий системы и структуры. Ученые, анализирующие большие системы, часто вообще отказываются предпринимать какие-либо попытки точно определить границы, очерчивающие рассматриваемые ими системы.
Главное, что определяет систему, — это взаимосвязь и взаимодействие частей в рамках целого. Если такое взаимодействие существует, то допустимо говорить о системе, хотя степень взаимодействия ее частей может быть различной. Каждый отдельный объект, предмет или явление можно рассматривать как определенную целостность, состоящую из частей, и, следовательно, исследовать как систему.
От системы следует отличать так называемые неорганизованные совокупности – случайное скопление людей, различного рода свалки, «развал» старых книг у старьевщика и многие другие, в которых отсутствует внутренняя организация, связи случайны и несущественны, нет целостных, интегративных свойств, отличных от свойств отдельных фрагментов.
Если (Садовский), все признаки, интуитивно связываемые с системой и системностью, условно разделить на три группы, характеризующие внутреннее строение системы, специфические системные свойства и поведение системы, то их различные соединения дадут несколько десятков определений системы.
Примеры определений понятия системы.
Система:
– множество элементов, находящихся в отношениях и связях друг с другом, которые образуют определенную целостность, единство;
– совокупность взаимосвязанных элементов, обособленная от среды и взаимодействующая с ней как целое;
- множество связанных между собой элементов, причем элемент - это объект, внутреннее строение которого безотносительно к рассматриваемой системе при данном способе ее разложения и изучения;
- обособленная сознанием часть реальности, элементы которой обнаруживают общность в процессе взаимодействия.
- нечто, на что может воздействовать среда, и это нечто реагирует на возмущения, проявляя при этом свои свойства;
- совокупность элементов, у которых взаимосвязанность и взаимодействие определяются одной целью;
- ограниченный в среде и взаимодействующий с ней объект, который:
- имеет цель, в процессе ее достижения функционирует и развивается;
- имеет источники энергии и материалов для функционирования и развития;
- ему присуще управление с использованием информации о внешней среде и собственном состоянии и с моделированием собственного поведения во внешней среде;
- обладает интегративным свойством.
Можно дать логическое определение понятию системы – на основе понятия множества в математике, введенное для обозначения любой совокупности математических объектов, обладающих некоторым общим свойством. Множество можно описать, указав свойство, присущее только элементам этого множества: множество всех объектов, обладающим свойством Н(х) обозначают через {х: Н(х)}.
При таком подходе система - это множество объектов вместе с отношениями между объектами и между их атрибутами (свойствами). Это некорректное определение: формально - самые различные совокупности объектов можно назвать множествами и для многих из них можно установить определенные отношения между объектами. В этом определении содержательно не указано, что объекты, составляющие систему, взаимодействуют таким образом, что они обусловливают возникновение новых, целостных, системных свойств.
Такое предельно широкое понятие, как система, нельзя определить чисто логически через другие существующие понятия, поэтому его следует признать исходным и неопределяемым понятием, содержание которого можно объяснить с помощью примеров.
Под словом "система" обычно понимается совокупность взаимодействующих компонент и связей между ними. Весь мир можно рассматривать как сложную взаимосвязанную совокупность естественных и искусственных систем.
Термин «система» определяется с помощью таких терминов, как «связь», «элемент», «целое». В одинаковые словесные формулировки представители разных наук вкладывают различный смысл и такое согласие является лишь видимым: например, под связью, структурой можно понимать и как геометрические взаимоотношения частей, и как зависимость между частями или сторонами целого и как набор элементов.
У системы есть граница, поведение и сущность. Каждое из этих понятий определяется назначением системы и взаимодействием ее с другими системами.
При выделении системы исследователь выделяет какие-то стороны объекта, которые считает нужным исследовать. В одном и том же объекте можно выделить разные стороны, имеющие существенное для исследования значения, поэтому в одном и том же объекте могут быть выделены разные системы. В этом смысле система выступает в виде знания существенных, с определенной точки зрения, сторон объекта.
Разные стороны системы характеризуются различными существенными критериями, но все они должны обладать системообразующими признаками.
Например, для представления системы как кибернетической управляющей системы существенными критериями является управление и информационные процессы. Такая система должна обладать системообразующими признаками: целостностью, наличием целевой функции, иерархичностью строения, наличием большого числа элементов, взаимодействущих во времени и объединенных в подсистемы, имеющих достаточное число прямых и обратных связей между собой (каждая подсистема имеет локальную целевую функцию), что обуславливает огромное разнообразие состояний системы, связей и внутренних переменных,, наличием информационных потоков разных направлений, многоуровневым управлением.
Исходной характеристикой системы является ее противопоставление окружению, или среде. Среда — это все то, что не входит в систему. Среда представляет собой совокупность всех систем, кроме исследуемой, выделенной, интересующей нас в настоящий момент части реального окружающего мира.
Система представляет собой выделенное из внешней среды в соответствии с целью исследований подмножество объектов, интенсивность взаимосвязей которых превышает интенсивность связей с внешней средой.
Понятие системы может быть определено перечислением основных свойств, обязательных для любой системы.
- 1 Методологические основы моделирования сложных систем
- 1.1 Системность
- Понятия общей теории систем
- Определение понятия системы
- Основные свойства, обязательные для любой системы.
- Взаимодействие и взаимозависимость системы и внешней среды.
- Определение понятий элементов, связей, функций, внешней среды системы. Элемент
- Внешняя среда
- Функции системы
- Сложность систем
- Системный подход
- Классификация систем
- Развитие искусственной системы и ее жизненный цикл
- 1.2 Моделирование
- Общая методология моделирования
- Основные принципы моделирования:
- Процесс моделирования
- Анализ и синтез в моделировании
- Примеры сложных систем Космическая система наблюдения Земли как сложная техническая система Задачи космической системы наблюдения Земли
- Состав и структура космической системы наблюдения Земли
- 2 Построение математических моделей
- 2.1 Математическая модель, математическое моделирование – основные понятия, термины и определения
- Цели математического моделирования
- 2.2 Общие методы построения математической модели
- Микроподход и макроподход в исследованиях системы.
- Формальная запись модели системы
- Понятие вариационных принципов
- Модульное построение моделей
- 2.3 Требования к построению модели
- Адекватность и достоверность модели
- Равнозначимость внешнего и внутреннего правдоподобия
- Анализ чувствительности модели
- Пример анализа на чувствительность экономической задачи
- 3 Математические модели состояния и структуры системы
- 3.1 Модель состояния системы Состояние системы и ее функционирование
- Формализация процесса функционирования системы
- 3.2 Модель структуры системы Основные понятия структуры системы
- Модель состава и структуры системы
- Методология моделирования структуры системы
- Виды структур
- Формирование структуры модели с позиций структурного моделирования.
- Построение структурных моделей
- 3.3 Модель процесса функционирования
- Установление функциональных зависимостей
- Неопределенность функционирования системы
- Пути уменьшения неопределенностей
- Основные требования к модели процесса функционирования
- Анализ функционирования, анализ структуры технической системы
- Функционально – физический анализ технических объектов.
- Пример разработки моделей деятельности организации
- Пример функционально – физического анализа технических объектов
- Конструкция бытовой электроплитки
- Функционально стоимостной анализ.
- 4 Этапы построения моделей
- 4.1 Постановка задачи моделирования
- Разработка содержательной модели
- Разработка концептуальной модели
- Описание внешних воздействий
- Декомпозиция системы
- Подготовка исходных данных для математической модели
- Содержание концептуальной модели
- 4.2 Разработка математической модели
- Разработка функциональных соотношений
- Выбор метода решения задачи
- Проверка и корректировка модели
- Анализ чувствительности модели
- Проверка адекватности модели
- Контроль модели
- Корректировка модели
- Уточнение модели проектируемого объекта
- Реализация математической модели в виде программ для эвм
- 4.3 Практическое использование построенной модели и анализ результатов моделирования
- Примеры построения моделей Математическая реставрация Тунгусского феномена
- 1. Сбор информации о явлении, выдвижение гипотез.
- 2. Содержательная постановка задачи исследования явления.
- 3. Математическая постановка задачи.
- 4. Анализ результатов.
- 5. Проверка адекватности модели – сравнение с натурным экспериментом.
- 6. Анализ результатов.
- Прогноз климатических изменений
- 1. Содержательная постановка задачи
- 2. Концептуальная постановка. Построение математической модели.
- 3. Проведение вычислительного эксперимента.
- 4. Анализ результатов вычислительного эксперимента.
- 5 Виды математических моделей
- 5.1 Классификация математических моделей
- Пример представления модели различной сложности и классификации.
- 5.2 Классификация математических моделей в зависимости от оператора модели
- Линейные и нелинейные модели
- Обыкновенные дифференциальные модели
- 5.3 Классификация математических моделей в зависимости от параметров модели Непрерывные и дискретные модели
- Детерминированные и неопределенные модели
- Дискретно-детерминированная модель
- Статические и динамические модели
- Стационарные и нестационарные модели.
- Формализация системы в виде автомата
- Формализация системы в виде агрегата
- Моделирование процесса функционирования агрегата
- Моделирование агрегативных систем
- Модель сопряжения элементов
- 6 Математические модели распределения ресурсов в исследовании операций
- 6.1 Моделирование операций распределения ресурсов
- Формулировка задачи математического программирования
- 6.2 Модели линейного программирования
- Формулировка общей задачи линейного программирования.
- Типовые задачи линейного программирования
- Транспортная задача.
- Задача коммивояжера.
- Задача о ранце.
- Общая задача теории расписаний.
- Примеры сведения практических задач к канонической транспортной задаче
- 6.3 Распределительные задачи линейного программирования
- Примеры распределительных задач.
- Распределение транспортных единиц по линиям
- Выбор средств доставки грузов.
- Задача о назначениях
- Экономическая интерпретация задач линейного программирования.
- Перевозки взаимозаменяемых продуктов
- Перевозка неоднородного продукта на разнородном транспорте.
- 7 Математические модели физических явлений и процессов. Универсальность моделей
- 7.1 Математические модели на основе фундаментальных законов
- Теоретический метод составления математических моделей
- Основные фундаментальные законы механики
- Работа, энергия, мощность
- 7.2 Уравнения движения
- Динамика поступательного движения.
- 7.3 Уравнения состояния
- Термодинамическая система.
- Упругие свойства твердых тел.
- Жидкости.
- 7.4 Универсальность моделей
- Модели на основе аналогий
- Типовые математические модели элементов и подсистем
- Модель колебательного процесса
- Модель консервативной системы.
- Электрическая подсистема.
- Модели элементов гидравлических систем
- Модели элементов пневматических систем
- 8 Моделирование производственных процессов
- 8.1 Модели систем массового обслуживания
- Основные элементы систем массового обслуживания.
- Характеристики потока
- Классификация смо
- Оценка эффективности смо
- Аналитические и статистические модели
- 8.2 Модели производственных процессов
- Дискретный производственный процесс
- Непрерывный производственный процесс
- Агрегатное представление производственного процесса
- Имитационное моделирование процессов функционирования
- Формализация основных операций производственного процесса Формализованная схема дискретного производственного процесса.
- Формализация отклонения течения производственного процесса от нормального
- Моделирование комплексного процесса обработки, сборки и управления при поточном производстве
- Формализованная схема непрерывного производственного процесса.
- 9 Синтез модели (проекта) системы
- 9.1 Проектирование системы как процесс создания (синтеза) ее модели
- 9.2 Методология проектирования
- Типовые проектные процедуры формирования облика системы
- 9.3 Эффективность системы Понятие эффективности системы
- Формирование модели цели системы
- Выбор критериев и показателей эффективности
- Основные принципы выбора критериев эффективности:
- Проблемы многокритериальности
- 9.4 Технология проектирования
- 9.5 Принятие решений в проектировании
- Выбор в условиях неопределенности
- Моделирование принятия решения
- Прогнозирование в принятии решений
- 9.6 Анализ инвестиционной привлекательности системы Основные типы инвестиций.
- Основные экономические концепции инвестиционного анализа.
- Состав работ при инвестиционном проектировании
- Конкурентоспособность проектируемой системы Оценка потенциальной емкости рынка и потенциального объема продаж
- Оценка конкурентоспособности
- Методы оценки эффективности инвестиций
- Метод определения чистой текущей стоимости.
- Метод расчета рентабельности инвестиций
- Метод расчета внутренней нормы прибыли
- Расчет периода окупаемости инвестиций
- Маркетинг и управление проектом
- Задачи управления проектами
- 9.7 Особенности синтеза модели (проекта) технических систем Этапы проектирования
- Особенности проектирования адаптивных систем
- Моделирование функционирования технической системы Особенности построения моделей при проектировании
- Формирование технического облика системы
- Формирование структуры системы
- Выбор основных проектных параметров системы
- Формирование множества вариантов системы
- 10 Информационное обеспечение синтеза системы
- 10.1 Основные задачи и типы информационных систем Общие свойства информационных систем
- Файл-серверные информационные системы
- Клиент-серверные информационные системы
- Архитектура Интернет/Интранет
- Хранилища данных и системы оперативной аналитической обработки данных
- 10.2 Особенности проектирования информационных систем
- Схемы разработки проекта
- 1. Предпроектные исследования
- 2 Постановка задачи
- 3 Проектирование системы
- Архитектура программного обеспечения
- Подсистема администрирования.
- Техническая архитектура
- Организационное обеспечение системы
- 4 Реализация и внедрение системы
- 10.3 Концепции автоматизации проектирования
- История развития сапр
- Классификация сапр
- Стратегическое развитие сапр Современное состояние сапр
- Направления разработки проектной составляющей сапр
- Разновидности сапр
- Математическое и информационное обеспечение сапр
- 11 Моделирование процесса управления
- 11.1 Основные определения
- Формальная запись системы с управлением
- 11.2 Модели систем автоматического управления
- Устойчивость движения систем
- Определение программного движения и управление движением
- 11.3 Модели автоматизированных систем управления
- Модели автоматизированных систем управления производственными процессами
- Модели автоматизированных систем управления предприятием