Разновидности сапр
Современные САПР предоставляют широкий спектр интегрированных и изолированных программных продуктов, которые могут решать различные задачи при автоматизации проектирования, подготовке производства, управления:
- создание трехмерной модели изделия;
- создание конструкторской документации на изделие;
- создание технологической документации на изделие;
- анализ изделия (прочностной, динамический анализ и т.д.);
- управление проектами и техническим документооборотом;
- создание технологической оснастки для изготовления изделия;
- изготовление изделия.
Прежде всего появились (70-е годы) и успешно в некоторых случаях применяются до сих пор автономные чертежно-ориентированные системы двумерного моделирования, затем возможности таких систем расширились - создание трехмерной электронной модели объекта, что дает возможность решения задач моделирования вплоть до момента изготовления.
Это CAD-системы (Computer Aided Design — компьютерная поддержка проектирования), предназначенные для решения конструкторских задач и оформления конструкторской документации. Эти системы не изменяют самой технологии проектирования объекта и подготовки производства, представляющие собой, по сути дела, электронный кульман (двухмерное моделирование).
Требование сокращения сроков проектирования, подготовки производства новых видов изделий и разработки таких технологических процессов, которые в условиях конкретного производства позволяют при минимальных затратах получить продукцию с заданными свойствами, вызвало к жизни разработку соответствующих автоматизированных систем.
В современные CAD-системы входят модули моделирования трехмерной конструкции и оформления чертежей и текстовой конструкторской документации (спецификаций, ведомостей и т. д.). Такие недорогие системы индивидуального пользования (100—3000 долл.) широко распространены. Имеется много версий таких систем (AutoCAD, Autodesk, DataCAD, IntelliCAD, SurfCAM), только AutoCAD к 2003 году продано свыше 4 млн. копий.
Расширение систем - все технологические процессы переводятся в электронный вид. Типовая система технологического проектирования основывается на взаимосвязанных базах данных: изделий и спецификаций, технологических процессов, параметров оборудования, оснастки, материалов, применяемых на предприятии. Автоматизация подготовки технологического процесса дает возможность избежать ошибок и ускорить процесс подготовки производства – появились CAM-системы.
CAM-системы (Computer Aided Manufacturing - компьютерная поддержка изготовления) - системы технологической подготовки производства, предназначены для проектирования обработки изделий на станках с числовым программным управлением и выдачи программ для этих станков. В настоящее время они широко применяются для изготовления сложнопрофильных деталей и сокращения цикла подготовки их производства. В CAM-системах используется трехмерная модель детали, созданная в CAD-системе.
САЕ-системы (Computer Aided Engineering — поддержка инженерных расчетов) – проблемно-ориентированные системы для решения расчетных задач при проектировании (расчеты на прочность, анализ и моделирование тепловых процессов, расчеты гидравлических систем и машин, расчеты процессов литья). В CAЕ-системах также используется трехмерная модель изделия, созданная в CAD-системе. Особенно развиты эти системы при автоматизации производства с применением пресс-форм и штампов – на них приходится более половины продаж CAM.
На начальном этапе пользователи CAD/CAM/CAE-систем работали на графических терминалах с разделением системных ресурсов центрального процессора. В начале 80-х гг. стоимость одной лицензии CAD-системы доходила до $ 90 тыс. К концу 80-х гг. CAD-системы были переведены на персональные компьютеры, и их стоимость снизилась до $ 20 тыс. Сейчас - несколько тыс. долл.
Сейчас CAD/CAM/CAE-системы представляют собой интегрированные программные комплексы, обеспечивающие единую поддержку всего цикла разработки от эскизного проектирования до технологической подготовки производства, испытаний и сопровождений. Современные CAD/CAM/CAE-системы дают возможность сократить срок внедрения новых изделий, повысить качество и надежность выпускаемой продукции, уменьшить стоимость отработки (например, заменяя физическое моделирование на основе прототипа математическим).
Традиционно существует деление CAD/CAM/CAE-систем на системы легкого, среднего и тяжелого классов (в соответствии с функциональными возможностями). Это деление достаточно условно, грани между ними стираются, но системы различаются и по функциональным возможностям и по цене. Имеются также САПР, которые не относятся ни к каким классам - это системы, обеспечивающие различные специализированные решения.
Системы легкого класса - совокупность программ, ориентированных на оформление конструкторской и технологической документации. Эти программы, как правило, не связаны единой структурой данных; их функциональные возможности ограничены плоским (или приближенным трехмерным) представлением машиностроительного объекта. Тем не менее, программы этого класса существенно повышают темпы и качество выпускаемой бумажной документации. Локальная автоматизация проектно-конструкторских и технологических рабочих мест на основе таких систем может быть применена, если: разработки отдельных специалистов относительно независимы, документирование ведется в основном на бумажных носителях, предприятие (подразделение) использует традиционную схему документооборота и внесения изменений, уровень сложности выпускаемой продукции невысок. Системы легкого класса предназначены для автоматизации выпуска конструкторской и технологической документации, подготовки управляющих программ для оборудования с ЧПУ “по электронному чертежу”. Это позволяет сократить время разработки проектов и выпуска документации, но не гарантируют проектировщиков от ошибок даже при полном соответствии документации стандартам - такие системы эффективны только в случае использования их квалифицированными конструкторами и технологами, имеющими навыки работы с САПР.
Системы среднего класса - функционально-независимые системы, работающие на основе единой структуры данных. Системы позволяют в полной мере осуществлять трехмерное моделирование и создавать электронные математические модели, имеют средства параметрического моделирования. К системам этого класса относятся и специализированные расчетные, аналитические системы, системы подготовки управляющих программ для станков с ЧПУ. Пользователь получает все преимущества трехмерного проектирования: топологическую точность, возможность анализа трехмерных моделей и использования в подготовке управляющих программ для станков с ЧПУ. По объемной модели изделия имеется возможность контроля взаимного расположения деталей, определять инерционно-массовые, прочностные и прочие характеристики, моделировать все виды ЧПУ-обработки, отрабатывать внешний вид по фотореалистичным изображениям и выпускать документацию. Обеспечивается управление проектами на базе электронного документооборота.
Использование совокупности проблемно-ориентированных конструкторских и технологических подсистем среднего уровня целесообразно для предприятия, ориентированного на выпуск высокотехнологичной продукции. Экономический эффект состоит в сокращении затрат на доводку опытных образцов изделий в результате исключения ошибок при проектировании. Эти системы неприхотливы к технической платформе, позволяют совмещать функциональность систем верхнего уровня с простотой систем нижнего уровня.
Системы тяжелого класса - многофункциональные интегрированные системы с единой структурой данных и набором проблемно-ориентированных приложений, а также узкоспециализированные системы. Системы обеспечивают две возможности: автоматизацию всего цикла создания изделия от концептуальной идеи до реализации без дополнительного использования внешних приложений и создание единой цифровой модели, с которой все участники проекта могут работать одновременно. Такие системы позволяют изменять сложные структуры в больших сборках, строить сложные ассоциативные связи, а также обладают определенной гибкостью, так как изделие в процессе проектирования постоянно изменяется.
Эти системы дают возможность: конструировать детали с учетом особенностей материалов и технологичности, моделировать работу механизмов, проводить динамический анализ сборки с имитацией сборочных приспособлений и инструментов, проектировать оснастку с моделированием процессов изготовления (штамповки, литья, гибки), что исключает брак в оснастке и изготовление натурных макетов, то есть значительно уменьшает затраты и время на подготовку производства изделия.
Стоимость таких систем вдвое больше систем среднего класса - свыше 10 тыс. долл. на одно рабочее место, на них приходится львиная доля объема рынка в денежном выражении. Применяются такие системы для сложных производств машиностроения, двигателестроения, авиационных и аэрокосмических. Внедрение такой интегрированной автоматизированной системы оправдано для высокоорганизованных предприятий, имеющих достаточные финансовые средства, современное оборудование и высококвалифицированных высокооплачиваемых сотрудников.
Минимальная стоимость комплекса САПР, автоматизирующего все этапы подготовки производства на предприятии, достигается применением систем всех трех классов (уровней функциональных возможностей).
Возможность подробного моделирования как конструкции изделий и их функциональных характеристик, так и процессов их изготовления с помощью САПР тяжелого класса вызвала к середине 90-х годов появление нового типа организации работы промышленного предприятия, названной Concurrent Engineering, позволяющая параллельно поагрегатно разрабатывать и изготовлять изделия. В результате начинать изготавливать изделие можно до выпуска полного комплекта документации, что сокращает время и затраты на проектирование при повышении качества изделий.
Одной из задач управления проектированием является управление потоком работ, состоящих из отдельных шагов различных типов. Шаги маршрута работ могут представлять собой выполнение проектных процедур и операций, пересылку документов и файлов другим пользователям, изменение статуса объекта, просмотр, контроль, утверждение проектов и внесение в них изменений и т.п. Между шагами перемещается пакет документов, документы проекта обрабатываются, видоизменяются, оцениваются, пакет автоматически пополняется. Может осуществляться одновременное управление различными проектами.
Функции координации работ CAD/CAM/CAE-систем, управления проектными данными и проектированием в целом возложены на системы управления проектными данными PDM (Product Data Management) - управление проектированием и его информационным обеспечением. Основным компонентом систем PDM является хранилище данных DW (Data Warehouse), образованное базами данных и системой управления данными.
В системах PDM разнообразие типов проектных данных и документов поддерживается их классификацией, выделением структурных элементов и их описаний в соответствии с атрибутами и связями. Имеется система поиска нужных данных по различным критериям. Например, элементы дерева, представляющего структуру объекта, могут соответствовать сборочным узлам, агрегатам, блокам, отдельным деталям. Навигация по дереву позволяет просматривать относящиеся к структурным единицам документы, геометрические модели, чертежи и другие атрибуты. Редактор позволяет устанавливать связи в виде ссылок между компонентами (например, между изображениями на чертежах и элементами спецификаций).
При внесении изменений в проектные данные обеспечивается целостность проекта – каждый разработчик работает со своей версией проекта (доступ к нему ограничен), имеются средства ведения многих версий проекта, имеются средства учета влияния и автоматического распространения вносимых изменений на другие части проектной документации. Для подготовки, хранения и сопровождения необходимых документов имеются специализированные системы управления документами и документооборотом.
Основные функции систем PDM:
1. Хранение проектных данных (поиск, редактирование, аннотирование чертежей и документов), поддержка классификаторов и справочников, автоматизированное составление спецификаций.
2. Управление конфигурацией объекта, ведение версий проекта, контроль изменений, классификация и формирование обозначений (кодификация), визуализация структуры объекта в виде дерева, в том числе многооконное представление трехмерных изображений.
3. Управление документооборотом, электронным архивом (атрибутирование, поиск по атрибутам, контроль исполнения, маршрутизация и визуализация), ведение распределенных архивов документов.
4. Защита информации и управление правами доступа к данным.
5. Поддержка типовых форматов, генерация отчетов (спецификаций, ведомостей).
Информационная поддержка этапа производства осуществляется автоматизированной системой управления предприятием (АСУП) и автоматизированной системой управления технологическими процессами (АСУТП).
К АСУП относятся следующие системы.
ERP (Enterprise Resource Planning) – система планирования и управления предприятием выполняет бизнес-функции, связанные с планированием производства, закупками, сбытом продукции, анализом перспектив маркетинга, управлением финансами, персоналом, складским хозяйством, учетом основных фондов и т.п.
SCM (Supply Chain Management) – система управления цепочками поставок, управляет поставками материалов и комплектующих.
MRP-2 (Manufacturing Requirement Planning) – система планирования производства и требований к материалам. Система ориентирована на бизнес-функции, непосредственно связанные с производством.
MES (Manufacturing Execution Systems) – производственная исполнительная система, ориентированная на решение оперативных задач управления проектированием, производством, маркетингом.
CRM (Customer Requirement Management) – система управления взаимоотношениями с заказчиками и покупателями, анализ рыночной ситуации, перспективы спроса на планируемые изделия.
S&SM (Sales and Service Management) – маркетинговые функции, обслуживание изделий.
На этапе эксплуатации применяются также специализированные компьютерные системы, ориентированные на ремонт, контроль, диагностику эксплуатируемых систем.
E-Commerce – системы электронного бизнеса. Ориентированы на организацию на сайтах Интернет витрин товаров и услуг, объединяют в едином информационном пространстве запросы заказчиков и данные о возможностях организаций, специализирующихся на проектировании, изготовлении и поставках продукции.
Интеллектуальные средства поддержки принятия решений
В качестве систем поддержки принимаемых решений – систем DSS (Decision Support System) часто используют хранилища данных и OLAP-средства (On-Line Analytical Processing), которые обеспечивают оперативный доступ к данным для выяснения зависимостей между параметрами.
В составе подсистем управления могут быть средства консультирования по принятию решений. Они могут быть представлены в виде множества модулей, объединяемых гипертекстовой оболочкой. (Гипертекст – структурированный текст с перекрестными ссылками, отражающими смысловые связи частей текста). Библиотека первичных электронных документов – объектно-ориентированная структурированная гипертекстовая библиотека по основным достижениям, проектам, отдельным элементам конкретной области проектирования.
Интегрированные системы
Дальнейшее развитие – создание интегрированных систем, объединяющих комплекс САПР с автоматизированной системой управления предприятием (экономический анализ и прогноз, бухгалтерский учет, управление снабжением и сбытом).
EPD (Electronic Product Definition) - системы, поддерживающие концепцию полного электронного описания объекта. EPD — это технология, которая обеспечивает разработку и поддержку электронной информационной модели на протяжении всего жизненного цикла изделия, включая концептуальное и рабочее проектирование, технологическую подготовку, маркетинг, производство, эксплуатацию, ремонт и утилизацию. Система обеспечивает коллективную разработку изделия. С развитием EPD-концепции автономные CAD-, CAM- и CAE-систем превратились в интегрированные CAD/CAM/CAE-системы - появились системы управления информацией об изделии на протяжении всего его жизненного цикла PLM (Product Lifecycle Management).
Системы управления предприятием (ERP) оперируют теми же данными, с которыми работают конструкторы и технологи – информацией об изделиях, материалах и комплектующих, технологических маршрутах и производственных мощностях. Для создания непрерывного конструкторско-производственного цикла объединяются ERP-системы и системы конструкторской и технологической подготовки в рамках единой информационной системы. Разрабатываются как инструменты для интеграции, так и готовые подсистемы, уже настроенные на работу с CAD/CAM и PDM-системами.
Создание полного электронного описания объекта, информационная интеграция позволили перейти к технологии комплексной компьютеризации производства – унификации и стандартизации спецификаций продукции на всех этапах жизненного цикла – CALS-технологии (Continuous Acquisition and Lifecycle Support – непрерывное сопровождение и поддержка жизненного цикла). Такие технологии дают возможность построения открытых распределенных автоматизированных систем для проектирования и управления в промышленности. Основные спецификации представлены проектной, технологической, производственной, маркетинговой, эксплуатационной документацией. Главная проблема построения таких систем – обеспечение единообразного описания и интерпретации данных независимо от места и времени их получения на основе стандартизованных структуры и языков представления. Описания оборудования, машин и систем (в том числе, ранее спроектированных) хранятся в унифицированных форматах данных сетевых серверов. Тогда становится возможной работа над общим проектом разных коллективов, разделенных во времени и пространстве и использующих разные CAD/CAM/CAE-системы. Одна и та же конструкторская документация может быть использована многократно в разных проектах, одна и та же технологическая документация – адаптирована к различным производственным условиям.
Применение CALS-технологии позволяет существенно сократить объемы проектных работ, решать проблемы ремонтопригодности, интеграции продукции в различного рода системы и среды, адаптации к меняющимся условиям эксплуатации, специализации проектных организаций.
- 1 Методологические основы моделирования сложных систем
- 1.1 Системность
- Понятия общей теории систем
- Определение понятия системы
- Основные свойства, обязательные для любой системы.
- Взаимодействие и взаимозависимость системы и внешней среды.
- Определение понятий элементов, связей, функций, внешней среды системы. Элемент
- Внешняя среда
- Функции системы
- Сложность систем
- Системный подход
- Классификация систем
- Развитие искусственной системы и ее жизненный цикл
- 1.2 Моделирование
- Общая методология моделирования
- Основные принципы моделирования:
- Процесс моделирования
- Анализ и синтез в моделировании
- Примеры сложных систем Космическая система наблюдения Земли как сложная техническая система Задачи космической системы наблюдения Земли
- Состав и структура космической системы наблюдения Земли
- 2 Построение математических моделей
- 2.1 Математическая модель, математическое моделирование – основные понятия, термины и определения
- Цели математического моделирования
- 2.2 Общие методы построения математической модели
- Микроподход и макроподход в исследованиях системы.
- Формальная запись модели системы
- Понятие вариационных принципов
- Модульное построение моделей
- 2.3 Требования к построению модели
- Адекватность и достоверность модели
- Равнозначимость внешнего и внутреннего правдоподобия
- Анализ чувствительности модели
- Пример анализа на чувствительность экономической задачи
- 3 Математические модели состояния и структуры системы
- 3.1 Модель состояния системы Состояние системы и ее функционирование
- Формализация процесса функционирования системы
- 3.2 Модель структуры системы Основные понятия структуры системы
- Модель состава и структуры системы
- Методология моделирования структуры системы
- Виды структур
- Формирование структуры модели с позиций структурного моделирования.
- Построение структурных моделей
- 3.3 Модель процесса функционирования
- Установление функциональных зависимостей
- Неопределенность функционирования системы
- Пути уменьшения неопределенностей
- Основные требования к модели процесса функционирования
- Анализ функционирования, анализ структуры технической системы
- Функционально – физический анализ технических объектов.
- Пример разработки моделей деятельности организации
- Пример функционально – физического анализа технических объектов
- Конструкция бытовой электроплитки
- Функционально стоимостной анализ.
- 4 Этапы построения моделей
- 4.1 Постановка задачи моделирования
- Разработка содержательной модели
- Разработка концептуальной модели
- Описание внешних воздействий
- Декомпозиция системы
- Подготовка исходных данных для математической модели
- Содержание концептуальной модели
- 4.2 Разработка математической модели
- Разработка функциональных соотношений
- Выбор метода решения задачи
- Проверка и корректировка модели
- Анализ чувствительности модели
- Проверка адекватности модели
- Контроль модели
- Корректировка модели
- Уточнение модели проектируемого объекта
- Реализация математической модели в виде программ для эвм
- 4.3 Практическое использование построенной модели и анализ результатов моделирования
- Примеры построения моделей Математическая реставрация Тунгусского феномена
- 1. Сбор информации о явлении, выдвижение гипотез.
- 2. Содержательная постановка задачи исследования явления.
- 3. Математическая постановка задачи.
- 4. Анализ результатов.
- 5. Проверка адекватности модели – сравнение с натурным экспериментом.
- 6. Анализ результатов.
- Прогноз климатических изменений
- 1. Содержательная постановка задачи
- 2. Концептуальная постановка. Построение математической модели.
- 3. Проведение вычислительного эксперимента.
- 4. Анализ результатов вычислительного эксперимента.
- 5 Виды математических моделей
- 5.1 Классификация математических моделей
- Пример представления модели различной сложности и классификации.
- 5.2 Классификация математических моделей в зависимости от оператора модели
- Линейные и нелинейные модели
- Обыкновенные дифференциальные модели
- 5.3 Классификация математических моделей в зависимости от параметров модели Непрерывные и дискретные модели
- Детерминированные и неопределенные модели
- Дискретно-детерминированная модель
- Статические и динамические модели
- Стационарные и нестационарные модели.
- Формализация системы в виде автомата
- Формализация системы в виде агрегата
- Моделирование процесса функционирования агрегата
- Моделирование агрегативных систем
- Модель сопряжения элементов
- 6 Математические модели распределения ресурсов в исследовании операций
- 6.1 Моделирование операций распределения ресурсов
- Формулировка задачи математического программирования
- 6.2 Модели линейного программирования
- Формулировка общей задачи линейного программирования.
- Типовые задачи линейного программирования
- Транспортная задача.
- Задача коммивояжера.
- Задача о ранце.
- Общая задача теории расписаний.
- Примеры сведения практических задач к канонической транспортной задаче
- 6.3 Распределительные задачи линейного программирования
- Примеры распределительных задач.
- Распределение транспортных единиц по линиям
- Выбор средств доставки грузов.
- Задача о назначениях
- Экономическая интерпретация задач линейного программирования.
- Перевозки взаимозаменяемых продуктов
- Перевозка неоднородного продукта на разнородном транспорте.
- 7 Математические модели физических явлений и процессов. Универсальность моделей
- 7.1 Математические модели на основе фундаментальных законов
- Теоретический метод составления математических моделей
- Основные фундаментальные законы механики
- Работа, энергия, мощность
- 7.2 Уравнения движения
- Динамика поступательного движения.
- 7.3 Уравнения состояния
- Термодинамическая система.
- Упругие свойства твердых тел.
- Жидкости.
- 7.4 Универсальность моделей
- Модели на основе аналогий
- Типовые математические модели элементов и подсистем
- Модель колебательного процесса
- Модель консервативной системы.
- Электрическая подсистема.
- Модели элементов гидравлических систем
- Модели элементов пневматических систем
- 8 Моделирование производственных процессов
- 8.1 Модели систем массового обслуживания
- Основные элементы систем массового обслуживания.
- Характеристики потока
- Классификация смо
- Оценка эффективности смо
- Аналитические и статистические модели
- 8.2 Модели производственных процессов
- Дискретный производственный процесс
- Непрерывный производственный процесс
- Агрегатное представление производственного процесса
- Имитационное моделирование процессов функционирования
- Формализация основных операций производственного процесса Формализованная схема дискретного производственного процесса.
- Формализация отклонения течения производственного процесса от нормального
- Моделирование комплексного процесса обработки, сборки и управления при поточном производстве
- Формализованная схема непрерывного производственного процесса.
- 9 Синтез модели (проекта) системы
- 9.1 Проектирование системы как процесс создания (синтеза) ее модели
- 9.2 Методология проектирования
- Типовые проектные процедуры формирования облика системы
- 9.3 Эффективность системы Понятие эффективности системы
- Формирование модели цели системы
- Выбор критериев и показателей эффективности
- Основные принципы выбора критериев эффективности:
- Проблемы многокритериальности
- 9.4 Технология проектирования
- 9.5 Принятие решений в проектировании
- Выбор в условиях неопределенности
- Моделирование принятия решения
- Прогнозирование в принятии решений
- 9.6 Анализ инвестиционной привлекательности системы Основные типы инвестиций.
- Основные экономические концепции инвестиционного анализа.
- Состав работ при инвестиционном проектировании
- Конкурентоспособность проектируемой системы Оценка потенциальной емкости рынка и потенциального объема продаж
- Оценка конкурентоспособности
- Методы оценки эффективности инвестиций
- Метод определения чистой текущей стоимости.
- Метод расчета рентабельности инвестиций
- Метод расчета внутренней нормы прибыли
- Расчет периода окупаемости инвестиций
- Маркетинг и управление проектом
- Задачи управления проектами
- 9.7 Особенности синтеза модели (проекта) технических систем Этапы проектирования
- Особенности проектирования адаптивных систем
- Моделирование функционирования технической системы Особенности построения моделей при проектировании
- Формирование технического облика системы
- Формирование структуры системы
- Выбор основных проектных параметров системы
- Формирование множества вариантов системы
- 10 Информационное обеспечение синтеза системы
- 10.1 Основные задачи и типы информационных систем Общие свойства информационных систем
- Файл-серверные информационные системы
- Клиент-серверные информационные системы
- Архитектура Интернет/Интранет
- Хранилища данных и системы оперативной аналитической обработки данных
- 10.2 Особенности проектирования информационных систем
- Схемы разработки проекта
- 1. Предпроектные исследования
- 2 Постановка задачи
- 3 Проектирование системы
- Архитектура программного обеспечения
- Подсистема администрирования.
- Техническая архитектура
- Организационное обеспечение системы
- 4 Реализация и внедрение системы
- 10.3 Концепции автоматизации проектирования
- История развития сапр
- Классификация сапр
- Стратегическое развитие сапр Современное состояние сапр
- Направления разработки проектной составляющей сапр
- Разновидности сапр
- Математическое и информационное обеспечение сапр
- 11 Моделирование процесса управления
- 11.1 Основные определения
- Формальная запись системы с управлением
- 11.2 Модели систем автоматического управления
- Устойчивость движения систем
- Определение программного движения и управление движением
- 11.3 Модели автоматизированных систем управления
- Модели автоматизированных систем управления производственными процессами
- Модели автоматизированных систем управления предприятием