11.2 Модели систем автоматического управления
Система автоматического управления стремится сохранить в допустимых пределах отклонения (рассогласования) ошибки между требуемыми и действительными значениями управляемых переменных при помощи их сравнения на основе принципа обратной связи и использования получающихся при этом сигналов для управления.
При автоматическом управлении качество процесса управления обеспечивает регулятор: обеспечивает поступление управляющих сигналов в зависимости от возмущающих воздействий, заданную точность работы в установившемся режиме, заданные динамические свойства системы (уменьшение ошибки, демпфирование колебаний).
Дадим основные определения системы автоматического управления на примере регулирования температуры в электропечи для закалки металла.
При автоматическом управлении воздействие на управляемый орган осуществляет специальное управляющее устройство.
Для построения автоматического управления технологическим процессом необходимо реализовать (вместо человека) управляющее устройство (двигатель), которое могло бы изменять состояние органа управления (передвигать рукоятку реостата) в зависимости от сигнала измерительного элемента (термопары).
Поскольку на выходе измерительного элемента имеет место сигнал небольшой мощности (ее хватает для изменения положения стрелки прибора, но недостаточно для питания двигателя), необходимо ввести промежуточное звено – усилитель мощности.
Ниже представлена функциональная схема автоматического управления процессом закаливания в электропечи.
Сигнал у (t) (заданная температура) – управляющая переменная, сигнал х (t) (реальная температура) – управляемая переменная.
Система автоматического управления представляет собой совокупность объекта управления (электропечь) и управляющего устройства (усилитель, реостат, измерительное устройство, сравнивающее устройство), обеспечивающего процесс управления.
Управляющее устройство осуществляет целенаправленное воздействие на управляемую переменную (температуру). Для улучшения качества управления (уменьшения колебания процесса) в систему вводят дополнительный элемент – регулятор. При проектировании систем автоматического управления параметры усилителя мощности, привода, управляющего органа (реостата) остаются неизменными, изменяется только регулятор. На практике неизменную часть называют объектом управления (регулирования), а к управляющему устройству относят только изменяемую часть – регулятор. Именно его параметры изменяются в процессе проектирования САУ.
Система, у которой сигнал у (t) – известная функция (детерминированный сигнал) на всем промежутке управления, называется системой программного управления.
Система, у которой задающее воздействие у (t) = const называется системой стабилизации.
Система, у которой задающее воздействие у (t) – случайная функция, называется следящей системой.
Задающее устройство (задает нужное изменение параметров) преобразует воздействие в сигнал у (t), а сравнивающее устройство путем сравнения сигнала у (t) и регулируемой величины х (t) (предполагается, что измерительный элемент и элементы обратной связи не искажают сигнал х (t)) вырабатывает сигнал ошибки ε (t). Иногда сравнивающее устройство называют датчиком ошибки, отклонения или рассогласования.
Регулятор служит для обеспечения заданных динамических свойств замкнутой системы. С его помощью обеспечивается высокая точность работы в установившемся режиме, демпфируются колебания для сильно колебательных объектов (например, летательных аппаратов). Введение в систему регулятора позволяет устранить незатухающие или возрастающие колебания управляемой величины. Иногда регуляторы вырабатывают сигналы (команды) в зависимости от возмущающих воздействий, что существенно повышает точность систем.
В хорошо спроектированной системе ошибка ε (t) должна быть мала. Вместе с тем на объект должны поступать достаточно мощные воздействия. Мощности же сигнала ε (t) совершенно недостаточно для питания даже небольшого двигателя. В связи с этим важным элементом САУ является усилительное устройство, предназначенное для усиления мощности сигнала ошибки ε (t). Усилитель управляет энергией, поступающей от постороннего источника (электронные, гидравлические, пневматические усилители).
Исполнительные устройства предназначены для воздействия на управляющий орган (электрические, пневматические, гидравлические).
Чувствительные или измерительные элементы (датчики) преобразуют управляемые переменные в сигналы управления (например, преобразования вида "угол – напряжение"). Объектом управления считается вся неизменная часть системы (все элементы, кроме регулятора) – электрическая печь, ядерный реактор, самолет, ракета и т.д. Управляемые переменные – напряжение, число оборотов, угловое положение, курс, мощность и т.д.
Одномерные системы могут быть системами программного управления, системами стабилизации и следящими системами.
Кроме того, встречаются системы: системы с поиском экстремума показателя качества, системы оптимального управления, адаптивные системы.
Первый этап исследования или проектирования систем автоматического управления, как и любых других систем, - неформальный этап – построение описательной, содержательной модели.
Математическая модель САУ (операторное уравнение) устанавливает количественную связь между входом у (t) и выходом х (t) системы.
В большинстве случаев операторное уравнение системы принадлежит к классу дифференциальных уравнений или эквивалентных им интегральных уравнений.
Для получения дифференциального уравнения системы в целом обычно составляют описания отдельных ее элементов, т.е. составляют дифференциальные уравнения для каждого входящего в систему элемента (например, для САУ электропечи составляются дифференциальные уравнения усилителя, привода, реостата, электропечи, термопары и элемента сравнения).
Задачей системы автоматического управления является изменение переменной у (t) согласно заданному закону с определенной точностью (с определенной ошибкой).
При проектировании систем автоматического управления необходимо выбрать такие параметры системы, которые обеспечили бы требуемую точность управления. Кроме этого, параметры системы должны обеспечить требования устойчивости и регулярности поведения системы в переходном процессе.
Системы автоматического управления вследствие самого принципа их действия, благодаря которому часть энергии с их выхода может влиять на вход, являются системами, склонными к колебаниям.
При появлении какого либо возмущения или изменении управляющего воздействия система приходит в движение.
Устойчивая система при установившихся значениях управляющих и возмущающих воздействий, спустя некоторое время вновь приходит к установившемуся состоянию равновесия, а неустойчивая система, придя в движение, не приходит к установившемуся состоянию равновесия, а отклонение ее от состояния равновесия будет либо все время увеличиваться, либо непрерывно изменяться в форме постоянных незатухающих колебаний.
Поэтому для удовлетворительной работы системы автоматического управления необходимо, чтобы она была устойчива. Требование устойчивости должно выполняться с некоторым запасом, предусматривающим возможные изменения параметров системы во время ее работы.
Если система устойчива, то представляет интерес ее поведение в динамике: максимальное отклонение регулируемой величины у (t) в переходном процессе, время переходного процесса.
По виду дифференциальных уравнений, приближенно описывающих процессы в системах автоматического управления можно сделать выводы о свойствах систем.
В случае динамической системы (модель системы описывается дифференциальными или разностными уравнениями) возникает вопрос отыскания программного управляемого движения. Эти задачи решаются методами теории управления. Основные понятия этой теории – обратная связь, программное движение, механизм управления, оптимальное управление. Цели управления определяют свойства и особенности системы управления, ее структуру и функции.
- 1 Методологические основы моделирования сложных систем
- 1.1 Системность
- Понятия общей теории систем
- Определение понятия системы
- Основные свойства, обязательные для любой системы.
- Взаимодействие и взаимозависимость системы и внешней среды.
- Определение понятий элементов, связей, функций, внешней среды системы. Элемент
- Внешняя среда
- Функции системы
- Сложность систем
- Системный подход
- Классификация систем
- Развитие искусственной системы и ее жизненный цикл
- 1.2 Моделирование
- Общая методология моделирования
- Основные принципы моделирования:
- Процесс моделирования
- Анализ и синтез в моделировании
- Примеры сложных систем Космическая система наблюдения Земли как сложная техническая система Задачи космической системы наблюдения Земли
- Состав и структура космической системы наблюдения Земли
- 2 Построение математических моделей
- 2.1 Математическая модель, математическое моделирование – основные понятия, термины и определения
- Цели математического моделирования
- 2.2 Общие методы построения математической модели
- Микроподход и макроподход в исследованиях системы.
- Формальная запись модели системы
- Понятие вариационных принципов
- Модульное построение моделей
- 2.3 Требования к построению модели
- Адекватность и достоверность модели
- Равнозначимость внешнего и внутреннего правдоподобия
- Анализ чувствительности модели
- Пример анализа на чувствительность экономической задачи
- 3 Математические модели состояния и структуры системы
- 3.1 Модель состояния системы Состояние системы и ее функционирование
- Формализация процесса функционирования системы
- 3.2 Модель структуры системы Основные понятия структуры системы
- Модель состава и структуры системы
- Методология моделирования структуры системы
- Виды структур
- Формирование структуры модели с позиций структурного моделирования.
- Построение структурных моделей
- 3.3 Модель процесса функционирования
- Установление функциональных зависимостей
- Неопределенность функционирования системы
- Пути уменьшения неопределенностей
- Основные требования к модели процесса функционирования
- Анализ функционирования, анализ структуры технической системы
- Функционально – физический анализ технических объектов.
- Пример разработки моделей деятельности организации
- Пример функционально – физического анализа технических объектов
- Конструкция бытовой электроплитки
- Функционально стоимостной анализ.
- 4 Этапы построения моделей
- 4.1 Постановка задачи моделирования
- Разработка содержательной модели
- Разработка концептуальной модели
- Описание внешних воздействий
- Декомпозиция системы
- Подготовка исходных данных для математической модели
- Содержание концептуальной модели
- 4.2 Разработка математической модели
- Разработка функциональных соотношений
- Выбор метода решения задачи
- Проверка и корректировка модели
- Анализ чувствительности модели
- Проверка адекватности модели
- Контроль модели
- Корректировка модели
- Уточнение модели проектируемого объекта
- Реализация математической модели в виде программ для эвм
- 4.3 Практическое использование построенной модели и анализ результатов моделирования
- Примеры построения моделей Математическая реставрация Тунгусского феномена
- 1. Сбор информации о явлении, выдвижение гипотез.
- 2. Содержательная постановка задачи исследования явления.
- 3. Математическая постановка задачи.
- 4. Анализ результатов.
- 5. Проверка адекватности модели – сравнение с натурным экспериментом.
- 6. Анализ результатов.
- Прогноз климатических изменений
- 1. Содержательная постановка задачи
- 2. Концептуальная постановка. Построение математической модели.
- 3. Проведение вычислительного эксперимента.
- 4. Анализ результатов вычислительного эксперимента.
- 5 Виды математических моделей
- 5.1 Классификация математических моделей
- Пример представления модели различной сложности и классификации.
- 5.2 Классификация математических моделей в зависимости от оператора модели
- Линейные и нелинейные модели
- Обыкновенные дифференциальные модели
- 5.3 Классификация математических моделей в зависимости от параметров модели Непрерывные и дискретные модели
- Детерминированные и неопределенные модели
- Дискретно-детерминированная модель
- Статические и динамические модели
- Стационарные и нестационарные модели.
- Формализация системы в виде автомата
- Формализация системы в виде агрегата
- Моделирование процесса функционирования агрегата
- Моделирование агрегативных систем
- Модель сопряжения элементов
- 6 Математические модели распределения ресурсов в исследовании операций
- 6.1 Моделирование операций распределения ресурсов
- Формулировка задачи математического программирования
- 6.2 Модели линейного программирования
- Формулировка общей задачи линейного программирования.
- Типовые задачи линейного программирования
- Транспортная задача.
- Задача коммивояжера.
- Задача о ранце.
- Общая задача теории расписаний.
- Примеры сведения практических задач к канонической транспортной задаче
- 6.3 Распределительные задачи линейного программирования
- Примеры распределительных задач.
- Распределение транспортных единиц по линиям
- Выбор средств доставки грузов.
- Задача о назначениях
- Экономическая интерпретация задач линейного программирования.
- Перевозки взаимозаменяемых продуктов
- Перевозка неоднородного продукта на разнородном транспорте.
- 7 Математические модели физических явлений и процессов. Универсальность моделей
- 7.1 Математические модели на основе фундаментальных законов
- Теоретический метод составления математических моделей
- Основные фундаментальные законы механики
- Работа, энергия, мощность
- 7.2 Уравнения движения
- Динамика поступательного движения.
- 7.3 Уравнения состояния
- Термодинамическая система.
- Упругие свойства твердых тел.
- Жидкости.
- 7.4 Универсальность моделей
- Модели на основе аналогий
- Типовые математические модели элементов и подсистем
- Модель колебательного процесса
- Модель консервативной системы.
- Электрическая подсистема.
- Модели элементов гидравлических систем
- Модели элементов пневматических систем
- 8 Моделирование производственных процессов
- 8.1 Модели систем массового обслуживания
- Основные элементы систем массового обслуживания.
- Характеристики потока
- Классификация смо
- Оценка эффективности смо
- Аналитические и статистические модели
- 8.2 Модели производственных процессов
- Дискретный производственный процесс
- Непрерывный производственный процесс
- Агрегатное представление производственного процесса
- Имитационное моделирование процессов функционирования
- Формализация основных операций производственного процесса Формализованная схема дискретного производственного процесса.
- Формализация отклонения течения производственного процесса от нормального
- Моделирование комплексного процесса обработки, сборки и управления при поточном производстве
- Формализованная схема непрерывного производственного процесса.
- 9 Синтез модели (проекта) системы
- 9.1 Проектирование системы как процесс создания (синтеза) ее модели
- 9.2 Методология проектирования
- Типовые проектные процедуры формирования облика системы
- 9.3 Эффективность системы Понятие эффективности системы
- Формирование модели цели системы
- Выбор критериев и показателей эффективности
- Основные принципы выбора критериев эффективности:
- Проблемы многокритериальности
- 9.4 Технология проектирования
- 9.5 Принятие решений в проектировании
- Выбор в условиях неопределенности
- Моделирование принятия решения
- Прогнозирование в принятии решений
- 9.6 Анализ инвестиционной привлекательности системы Основные типы инвестиций.
- Основные экономические концепции инвестиционного анализа.
- Состав работ при инвестиционном проектировании
- Конкурентоспособность проектируемой системы Оценка потенциальной емкости рынка и потенциального объема продаж
- Оценка конкурентоспособности
- Методы оценки эффективности инвестиций
- Метод определения чистой текущей стоимости.
- Метод расчета рентабельности инвестиций
- Метод расчета внутренней нормы прибыли
- Расчет периода окупаемости инвестиций
- Маркетинг и управление проектом
- Задачи управления проектами
- 9.7 Особенности синтеза модели (проекта) технических систем Этапы проектирования
- Особенности проектирования адаптивных систем
- Моделирование функционирования технической системы Особенности построения моделей при проектировании
- Формирование технического облика системы
- Формирование структуры системы
- Выбор основных проектных параметров системы
- Формирование множества вариантов системы
- 10 Информационное обеспечение синтеза системы
- 10.1 Основные задачи и типы информационных систем Общие свойства информационных систем
- Файл-серверные информационные системы
- Клиент-серверные информационные системы
- Архитектура Интернет/Интранет
- Хранилища данных и системы оперативной аналитической обработки данных
- 10.2 Особенности проектирования информационных систем
- Схемы разработки проекта
- 1. Предпроектные исследования
- 2 Постановка задачи
- 3 Проектирование системы
- Архитектура программного обеспечения
- Подсистема администрирования.
- Техническая архитектура
- Организационное обеспечение системы
- 4 Реализация и внедрение системы
- 10.3 Концепции автоматизации проектирования
- История развития сапр
- Классификация сапр
- Стратегическое развитие сапр Современное состояние сапр
- Направления разработки проектной составляющей сапр
- Разновидности сапр
- Математическое и информационное обеспечение сапр
- 11 Моделирование процесса управления
- 11.1 Основные определения
- Формальная запись системы с управлением
- 11.2 Модели систем автоматического управления
- Устойчивость движения систем
- Определение программного движения и управление движением
- 11.3 Модели автоматизированных систем управления
- Модели автоматизированных систем управления производственными процессами
- Модели автоматизированных систем управления предприятием