2.1 Математическая модель, математическое моделирование – основные понятия, термины и определения
Математика – наука, изучающая схемы моделей безотносительно к их конкретному воплощению и методы (способы) использования моделей для решения конкретных задач. Требования обеспечения математической строгости в системных исследованиях нереальны (претензии на абсолютную истину), основа системных исследований – неформальное упрощение задачи, адекватное поставленным целям.
Никакое определение не может в полном объеме охватить реально существующую деятельность по математическому моделированию. Несмотря на это, определения полезны тем, что в них делается попытка выделить наиболее существенные черты.
Желательно найти такое определение математической модели, которое давало бы возможность классифицировать (охватывать) все существующие и вновь создаваемые модели. Остановимся на формулировке математической модели, которая отражает ее целевую сущность исходя из понятия математического моделирования как процесса построения модели и исследований с ее помощью.
Термин «математическое моделирование» охватывает методологически малосвязанные разработку модели и ее использование. Иногда моделированием называется каждый из этих двух этапов в отдельности.
Математическое моделирование - это способ исследования различных процессов путем изучения явлений, имеющих различное физическое содержание, но описываемых одинаковыми математическими соотношениями.
Один из аспектов математического моделирования как способа познания - изучение системы, явления с помощью вычислительного эксперимента (в таком понимании термин "вычислительный эксперимент" может быть синонимом термина "математическое моделирование").
Многие задачи исследования систем трудно достаточно хорошо формализовать и свести к математическим моделям, позволяющим ставить и решать поставленные задачи. Непонимание (или неумение четко поставить задачу) часто приводит к «победе математики над разумом». Системный исследователь должен уметь формализовать в математических терминах конкретную задачу исследований - разработать математическую модель.
Практически математическое моделирование как метод исследований не имеет ограничений, так как:
- моделирующая система может одновременно содержать описания элементов непрерывного и дискретного действия,
- быть подверженной влиянию многочисленных случайных факторов сложной природы;
- допустимо описание системы соотношения большой размерности; обеспечивается простота перехода от одной задачи к другой введением переменных параметров, возмущений и различных начальных условий.
Математическая модель как средство познания, исследования реального мира формируется на основании общей методологии системных исследований.
Среди многих подходов к построению систем можно выделить два основных (подходы «снизу» и «сверху») – стремление изучить реально существующие системы и на основании этого сделать выводы о наблюдаемых закономерностях (подход Л. Берталанфи), и рассматривать множество всех мыслимых систем, сокращая его до рациональных пределов (подход У. Эшби).
Математическое моделирование как один из видов знакового моделирования представляет собой формальное описание объекта на языке математики, и исследование модели с помощью математических методов.
Математическое моделирование - процесс установления соответствия данному реальному объекту некоторого математического объекта, называемого математической моделью, и исследование этой модели, позволяющее получать характеристики рассматриваемого реального объекта.
Математические модели относятся к знаковым моделям.
Математическая модель – описание в виде математических соотношений (например, формул, уравнений, неравенств, логических условий, операторов) состояния, изменения, протекания процессов в системе или явлении (в том числе функционирования системы), в зависимости от параметров системы, входных сигналов, начальных условий и времени.
Математическая модель — это „эквивалент“ объекта, отражающий в математической форме важнейшие его свойства — законы, которым он подчиняется, связи, присущие составляющим его частям.
Математическая модель - абстрактное математическое представление процесса, устройства или теоретической идеи; оно использует набор переменных, чтобы представлять входы, выходы и внутренние состояния, а также множества уравнений и неравенств для описания их взаимодействия. (Определение основано на идеализации «вход — выход — состояние», заимствованной из теории автоматов).
Наконец, наиболее лаконичное определение математической модели: уравнение, выражающее идею.
Вид математической модели зависит как от природы реального объекта, так и от задач исследования объекта, требуемой достоверности и точности решения этой задачи. Математическая модель отражает именно те особенности, которые необходимо исследовать для решения поставленной задачи.
Обычно математическая модель только приближенно описывает поведение реальной системы, являясь ее абстракцией, так как знания о реальной системе никогда не бывают абсолютными, а гипотезы часто вынужденно или намеренно не учитывают некоторые факторы.
Для поддержки математического моделирования разработаны компьютерные системы моделирования, например, Matlab, Matcad и др. Они позволяют создавать формальные и блочные модели как простых, так и сложных процессов и устройств и легко менять параметры моделей в ходе моделирования. Блочные модели представлены блоками (чаще всего графическими), набор и соединение которых задаются диаграммой модели.
Основное качество математических моделей - "вариантность". Одним знаковым описанием кодируются физически различные системы, явления. На одной и той же модели могут быть изучены большое число вариантов её поведения (путем изменения параметров).
Универсальность моделей: принципиально разные реальные явления могут описываться одной и той же математической моделью. Например, колебательные процессы, имеющие совершенно разную природу описываются одинаковой математической моделью - мы изучаем сразу целый класс описываемых ею явлений.
Основная задача математического моделирования: по заданным входным параметрам найти значения выходных параметров системы (отобразить некоторое заданное множество X значений входных параметров x на множество Y значений выходных параметров y).
Модель — закономерность, преобразующая входные значения в выходные: Y = M(X). Под этим можно понимать таблицу, график, выражение из формул, закон (уравнение) и т. д. Это вопрос способа записи закономерности. Y - некоторый интересующий исследователя показатель.
На этом основании при определении понятия "математическая модель" используется широкое понятие оператора – функция, алгоритм, совокупность правил, обеспечивающие установление выходных параметров по заданным входным параметрам.
Математическую модель можно рассматривать как некоторый математический оператор и сформулировать понятие математической модели следующим образом.
Математическая модель – любой оператор (правило) А, позволяющий по значениям входных параметров x установить соответствующие выходные значения параметров y системы:
А: x → y, x X, y Y.
Такое широкое определение включает в себя не только все многообразие математических моделей, но и информационные модели – процедуру поиска данных в базе данных можно представить в виде некоторого оператора. В таком контексте информационная модель – специфическая форма математической модели.
Основные понятия в моделировании систем определяются из соответствия аналогичным понятиям системы: элемент системы, связь, внешняя среда.
Моделирование как метод исследования имеет следующую структуру: постановка задачи, создание модели, исследование модели, перенос знания с модели на оригинал.
Математика – наука, изучающая схемы моделей безотносительно к их конкретному воплощению и методы (способы) использования моделей для решения конкретных задач. Требования обеспечения математической строгости в системных исследованиях нереальны (претензии на абсолютную истину), основа системных исследований – неформальное упрощение задачи, адекватное поставленным целям.
Из этого следует множественность моделей одного объекта: для каждой цели требуется своя модель одного и того же объекта (множественность моделей одного объекта, пример – модели самолета для исследований аэродинамики, прочности).
Модель может быть сосредоточена на функциях системы (функциональная модель) или на ее объектах (модели данных).
Функциональные модели выделяют события в системе, представляют с требуемой степенью детализации систему функций, которые в свою очередь отражают свои взаимоотношения через объекты системы.
Модели данных выделяют объекты системы, которые связывают функции между собой и с их окружением и представляют собой подробное описание объектов системы, связанных системными функциями.
- 1 Методологические основы моделирования сложных систем
- 1.1 Системность
- Понятия общей теории систем
- Определение понятия системы
- Основные свойства, обязательные для любой системы.
- Взаимодействие и взаимозависимость системы и внешней среды.
- Определение понятий элементов, связей, функций, внешней среды системы. Элемент
- Внешняя среда
- Функции системы
- Сложность систем
- Системный подход
- Классификация систем
- Развитие искусственной системы и ее жизненный цикл
- 1.2 Моделирование
- Общая методология моделирования
- Основные принципы моделирования:
- Процесс моделирования
- Анализ и синтез в моделировании
- Примеры сложных систем Космическая система наблюдения Земли как сложная техническая система Задачи космической системы наблюдения Земли
- Состав и структура космической системы наблюдения Земли
- 2 Построение математических моделей
- 2.1 Математическая модель, математическое моделирование – основные понятия, термины и определения
- Цели математического моделирования
- 2.2 Общие методы построения математической модели
- Микроподход и макроподход в исследованиях системы.
- Формальная запись модели системы
- Понятие вариационных принципов
- Модульное построение моделей
- 2.3 Требования к построению модели
- Адекватность и достоверность модели
- Равнозначимость внешнего и внутреннего правдоподобия
- Анализ чувствительности модели
- Пример анализа на чувствительность экономической задачи
- 3 Математические модели состояния и структуры системы
- 3.1 Модель состояния системы Состояние системы и ее функционирование
- Формализация процесса функционирования системы
- 3.2 Модель структуры системы Основные понятия структуры системы
- Модель состава и структуры системы
- Методология моделирования структуры системы
- Виды структур
- Формирование структуры модели с позиций структурного моделирования.
- Построение структурных моделей
- 3.3 Модель процесса функционирования
- Установление функциональных зависимостей
- Неопределенность функционирования системы
- Пути уменьшения неопределенностей
- Основные требования к модели процесса функционирования
- Анализ функционирования, анализ структуры технической системы
- Функционально – физический анализ технических объектов.
- Пример разработки моделей деятельности организации
- Пример функционально – физического анализа технических объектов
- Конструкция бытовой электроплитки
- Функционально стоимостной анализ.
- 4 Этапы построения моделей
- 4.1 Постановка задачи моделирования
- Разработка содержательной модели
- Разработка концептуальной модели
- Описание внешних воздействий
- Декомпозиция системы
- Подготовка исходных данных для математической модели
- Содержание концептуальной модели
- 4.2 Разработка математической модели
- Разработка функциональных соотношений
- Выбор метода решения задачи
- Проверка и корректировка модели
- Анализ чувствительности модели
- Проверка адекватности модели
- Контроль модели
- Корректировка модели
- Уточнение модели проектируемого объекта
- Реализация математической модели в виде программ для эвм
- 4.3 Практическое использование построенной модели и анализ результатов моделирования
- Примеры построения моделей Математическая реставрация Тунгусского феномена
- 1. Сбор информации о явлении, выдвижение гипотез.
- 2. Содержательная постановка задачи исследования явления.
- 3. Математическая постановка задачи.
- 4. Анализ результатов.
- 5. Проверка адекватности модели – сравнение с натурным экспериментом.
- 6. Анализ результатов.
- Прогноз климатических изменений
- 1. Содержательная постановка задачи
- 2. Концептуальная постановка. Построение математической модели.
- 3. Проведение вычислительного эксперимента.
- 4. Анализ результатов вычислительного эксперимента.
- 5 Виды математических моделей
- 5.1 Классификация математических моделей
- Пример представления модели различной сложности и классификации.
- 5.2 Классификация математических моделей в зависимости от оператора модели
- Линейные и нелинейные модели
- Обыкновенные дифференциальные модели
- 5.3 Классификация математических моделей в зависимости от параметров модели Непрерывные и дискретные модели
- Детерминированные и неопределенные модели
- Дискретно-детерминированная модель
- Статические и динамические модели
- Стационарные и нестационарные модели.
- Формализация системы в виде автомата
- Формализация системы в виде агрегата
- Моделирование процесса функционирования агрегата
- Моделирование агрегативных систем
- Модель сопряжения элементов
- 6 Математические модели распределения ресурсов в исследовании операций
- 6.1 Моделирование операций распределения ресурсов
- Формулировка задачи математического программирования
- 6.2 Модели линейного программирования
- Формулировка общей задачи линейного программирования.
- Типовые задачи линейного программирования
- Транспортная задача.
- Задача коммивояжера.
- Задача о ранце.
- Общая задача теории расписаний.
- Примеры сведения практических задач к канонической транспортной задаче
- 6.3 Распределительные задачи линейного программирования
- Примеры распределительных задач.
- Распределение транспортных единиц по линиям
- Выбор средств доставки грузов.
- Задача о назначениях
- Экономическая интерпретация задач линейного программирования.
- Перевозки взаимозаменяемых продуктов
- Перевозка неоднородного продукта на разнородном транспорте.
- 7 Математические модели физических явлений и процессов. Универсальность моделей
- 7.1 Математические модели на основе фундаментальных законов
- Теоретический метод составления математических моделей
- Основные фундаментальные законы механики
- Работа, энергия, мощность
- 7.2 Уравнения движения
- Динамика поступательного движения.
- 7.3 Уравнения состояния
- Термодинамическая система.
- Упругие свойства твердых тел.
- Жидкости.
- 7.4 Универсальность моделей
- Модели на основе аналогий
- Типовые математические модели элементов и подсистем
- Модель колебательного процесса
- Модель консервативной системы.
- Электрическая подсистема.
- Модели элементов гидравлических систем
- Модели элементов пневматических систем
- 8 Моделирование производственных процессов
- 8.1 Модели систем массового обслуживания
- Основные элементы систем массового обслуживания.
- Характеристики потока
- Классификация смо
- Оценка эффективности смо
- Аналитические и статистические модели
- 8.2 Модели производственных процессов
- Дискретный производственный процесс
- Непрерывный производственный процесс
- Агрегатное представление производственного процесса
- Имитационное моделирование процессов функционирования
- Формализация основных операций производственного процесса Формализованная схема дискретного производственного процесса.
- Формализация отклонения течения производственного процесса от нормального
- Моделирование комплексного процесса обработки, сборки и управления при поточном производстве
- Формализованная схема непрерывного производственного процесса.
- 9 Синтез модели (проекта) системы
- 9.1 Проектирование системы как процесс создания (синтеза) ее модели
- 9.2 Методология проектирования
- Типовые проектные процедуры формирования облика системы
- 9.3 Эффективность системы Понятие эффективности системы
- Формирование модели цели системы
- Выбор критериев и показателей эффективности
- Основные принципы выбора критериев эффективности:
- Проблемы многокритериальности
- 9.4 Технология проектирования
- 9.5 Принятие решений в проектировании
- Выбор в условиях неопределенности
- Моделирование принятия решения
- Прогнозирование в принятии решений
- 9.6 Анализ инвестиционной привлекательности системы Основные типы инвестиций.
- Основные экономические концепции инвестиционного анализа.
- Состав работ при инвестиционном проектировании
- Конкурентоспособность проектируемой системы Оценка потенциальной емкости рынка и потенциального объема продаж
- Оценка конкурентоспособности
- Методы оценки эффективности инвестиций
- Метод определения чистой текущей стоимости.
- Метод расчета рентабельности инвестиций
- Метод расчета внутренней нормы прибыли
- Расчет периода окупаемости инвестиций
- Маркетинг и управление проектом
- Задачи управления проектами
- 9.7 Особенности синтеза модели (проекта) технических систем Этапы проектирования
- Особенности проектирования адаптивных систем
- Моделирование функционирования технической системы Особенности построения моделей при проектировании
- Формирование технического облика системы
- Формирование структуры системы
- Выбор основных проектных параметров системы
- Формирование множества вариантов системы
- 10 Информационное обеспечение синтеза системы
- 10.1 Основные задачи и типы информационных систем Общие свойства информационных систем
- Файл-серверные информационные системы
- Клиент-серверные информационные системы
- Архитектура Интернет/Интранет
- Хранилища данных и системы оперативной аналитической обработки данных
- 10.2 Особенности проектирования информационных систем
- Схемы разработки проекта
- 1. Предпроектные исследования
- 2 Постановка задачи
- 3 Проектирование системы
- Архитектура программного обеспечения
- Подсистема администрирования.
- Техническая архитектура
- Организационное обеспечение системы
- 4 Реализация и внедрение системы
- 10.3 Концепции автоматизации проектирования
- История развития сапр
- Классификация сапр
- Стратегическое развитие сапр Современное состояние сапр
- Направления разработки проектной составляющей сапр
- Разновидности сапр
- Математическое и информационное обеспечение сапр
- 11 Моделирование процесса управления
- 11.1 Основные определения
- Формальная запись системы с управлением
- 11.2 Модели систем автоматического управления
- Устойчивость движения систем
- Определение программного движения и управление движением
- 11.3 Модели автоматизированных систем управления
- Модели автоматизированных систем управления производственными процессами
- Модели автоматизированных систем управления предприятием