Работа, энергия, мощность
Силы служат причиной либо ускорения тела (динамическое действие), либо изменения его формы (статическое действие).
Если сила перемещает тело на некоторое расстояние, то она совершает над телом работу.
Работа = Сила х Перемещение.
При F = const (в случае постоянной силы в процессе перемещения) A = F s, в случае переменной силы – интеграл от силы по перемещению A = .
Мощность – отношение произведенной работы на время, в течение которой она произведена:
Мощность = Работа / Время.
Мгновенная мощность – производная работы по времени: Р = dA/dt. Поскольку dA = Fds (сила на перемещение), то Р = Fds/dt = Fv. Мгновенная мощность равна произведению мгновенной силы на мгновенную скорость.
Энергия – способность тела совершать работу, единая мера различных форм движения. Количественные характеристики зависят от вида энергии (механическая, внутренняя, химическая, ядерная, электромагнитная и др.).
Два способа передачи движения и соответствующей ему энергии от одного тела к другому – в форме работы и в форме теплоты (путем теплообмена). Для микрочастиц (атомы, электроны) эти понятия неприменимы.
Работа против силы тяжести.
Если тело движется в направлении действия силы тяжести, то над телом совершается работа A = G h или Aт = mg h.
Чтобы поднять тело (увеличить расстояние от центра Земли), над ним следует совершить работу. Работа, совершаемая силой F при движении против силы тяжести (подъеме тела) на высоту h не зависит от пути – зависит только от того, насколько тело может опуститься до заданного уровня. Эта работа запасается в виде потенциальной энергии тела (энергии положения) A =Wп = mgh, равной работе, затраченной на подъем тела.
Это не полная потенциальная энергия – только приращение энергии при подъеме тела на высоту (начало отсчета выбирается произвольно). С учетом изменения гравитационного поля по высоте Wп = m .
Потенциальной энергией называется энергия, зависящая только от взаимного расположения материальных точек (или тел).
Силы, действующие на материальную точку (тело), называются потенциальными, если работа этих сил при перемещении точки (тела) зависит только от начального и конечного положения точки (тела) в пространстве и не зависит от пути перемещения.
Во всех физических явлениях важна не сама потенциальная энергия, а ее изменение, которым определяется совершаемая работа. Уровень отсчета изменений заранее оговаривается.
Потенциальная энергия включает энергию положения и энергию упругой деформации.
Потенциальной энергией может обладать не только система взаимодействующих сил, но и отдельно взятое упруго деформируемое тело (сжатая пружина, растянутый стержень). В этом случае потенциальная энергия зависит от взаимного расположения отдельных частей тела (витков пружины).
Потенциальной энергией может обладать не только система взаимодействующих сил, но и отдельно взятое упруго деформируемое тело (сжатая пружина, растянутый стержень). В этом случае потенциальная энергия зависит от взаимного расположения отдельных частей тела (витков пружины).
Кинетическая энергия тела является мерой его механического движения и измеряется той работой, которую может совершить тело при торможении до полной остановки.
Из состояния покоя изменение скорости и пути к моменту t: V=at, S=Vt/2=at2/2.
При торможении на тело действует сила, направленная против его движения. До полной остановки тело под действием силы F совершит работу А: А = Fs = F v2/2a = mv2/2.
Кинетическая энергия тела К = mv2/2
При подъеме на высоту накопилась потенциальная энергия Wп, при падении с этой высоты эта потенциальная энергия превратилась в кинетическую Wк. Wп = Wк = mgh = mv2/2.
Пример: определение скорости с помощью маятника-груза.
1. Формулировка содержательной модели
О пределить скорость пули. Задача решается с помощью маятника-груза, подвешенного на легком жестком и свободно вращающемся стержне. Исходные данные – в соответствии с рисунком.
2. Формулировка концептуальной модели
Пуля, застрявшая в грузе, сообщит системе "пуля-груз" свою кинетическую энергию, которая в момент наибольшего отклонения стержня от вертикали полностью перейдет в потенциальную энергию системы. В основе решения задачи – закон сохранения энергии. Не учитываются потери энергии на разогрев пули и груза, на преодоление сопротивления воздуха, разгон стержня и т.д.
3. Разработка математической модели.
Эта трансформация описывается цепочкой равенств, из которых определяется искомая скорость v.
(M + m)V2/2 = (M + m) gl (1 – cosα).
4. Исследования модели и решение задачи.
Процессы, происходящие при проникновении пули в груз, уже не являются чисто механическими. Примененный закон дает только нижнюю границу оценки – сохраняется полная, а не механическая энергия системы – для правильного решения задачи надо воспользоваться законом сохранения импульса.
Работа, затрачиваемая на ускорение.
Если под действием постоянной силы Fуск тело равномерно ускоренно перемещается на расстояние s, то над ним совершается работа Aуск = Fуск s = mas.
Если ускорение сообщается телу, находящемуся в состоянии покоя, совершаемая над телом работа запасается в виде кинетической энергии Wк = mv2/2.
Кинетическая энергия тела К = mv2/2 – в случае поступательного движения тела со скоростью v.
В случае вращения под действием момента силы закрепленное на оси твердое тело приобретает угловое ускорение.
Полный момент М = = . Так как Fr = m a r = m ∆v/∆t r = m r ∆/∆t r = mr2a, то М = a ∆mi = М = I a. a - угловое ускорение, одинаковое у всех элементов массы тела. Или I = М / a.
Момент инерции тела I зависит от распределения массы тела относительно оси вращения.
Момент инерции тела относительно оси – мера инертности тела во вращательном движении вокруг этой оси, и равна сумме произведений масс всех частиц тела на квадраты их расстояний относительно той же оси. Зависит только от формы тела и расположения частиц в нем.
Поскольку работа равна силе на перемещение, то в случае вращательного движения А =М, где М – момент силы F, - угловое перемещение тела.
Если тело вращается вокруг неподвижной оси, то его кинетическая энергия К = Jw2/2, где J – момент инерции тела, w - угловая скорость.
Wвр – энергия вращательного движения (величина тангенциального ускорения – силы Кориолиса, если тело движется по радиусу во вращающейся системе отсчета). Перемещение тела в радиальном направлении r = vt, где v – скорость по радиусу. Точка за это время пройдет по пути окружности s = rωt = vωt2 = at2/2, где ω – угловая скорость вращающейся системы.
Работа против сил трения.
Движущееся тело теряет энергию из-за наличия трения, которое действует на поверхности соприкосновения тел и и затрудняет их перемещение относительно друг друга.
С ила трения направлена вдоль поверхности соприкосновения в сторону, противоположную движению Fтр = μFн, где μ – коэффициент трения, Fн – нормальная сила, которая прижимает тело к опоре (не зависит от площади соприкосновения тел).
μ = tgα (при каком угле наклона тело начинает двигаться).
Сила трения равна скатывающей силе Fтр = Fс.
Виды трения: покоя (μ0), скольжения (μск< μ0), качения (μк<< μ0).
Если тело движется с постоянной скоростью равномерно против сил трения, то над ним совершается работа Aтр = Fтр s = μFн s.
Работа против сил трения превращается в тепловую энергию.
Работа, затрачиваемая на упругую деформацию тела.
Согласно законам Ньютона все изменения состояния движения вызываются силами. Силы служат причиной либо ускорения тела (динамическое действие), либо изменения его формы (статическое действие).
Внешние силы изменяют форму тела – деформируют его вследствие относительного смещения элементов (молекул). Деформации, исчезающие с приращением действия силы – упругие деформации, тело возвращается к исходной форме. В пределах упругости вещества сила и деформация пропорциональны друг другу.
В этом случае справедлив закон Гука: действующей на тело (пружину) силе противодействует упругая сила F = - cx.
Коэффициент пропорциональности равен коэффициенту упругости (жесткость).
Упругость означает существование однозначной монотонно возрастающей функции, связывающей напряжение = F/S (S - площадь поперечного сечения) и деформацию ε = x/l (x – относительное перемещение концов, l – длина образца): = Е ε, Е – модуль упругости.
Пример изменения формы тела – изменение длины пружины. Изменение формы тела (деформация) вызывается относительным смещением элементов (молекул). Деформации, исчезающие с прекращением действия силы – упругие деформации. В пределах упругости вещества силы и деформации пропорциональны друг другу. В этом случае справедлив закон Гука.
Потенциальная энергия включает энергию положения и энергию упругой деформации.
Действующей на тело (пружину) силе противодействует упругая сила F = - сs, где с – жесткость пружины (с = F / s).
Если пружина растягивается на длину s, то действующая на пружину сила возрастет пропорционально s от 0 до Fмакс. Среднее значение силы равно 1/2 Fмакс.
Работа, затрачиваемая на деформацию пружины A = F/2 s, но F = -с s, тогда А = cs2/2, где с - жесткость тела или пружины. Эта работа запасается в виде потенциальной энергии упругой деформации (растянутой пружины): Wп = cs2/2.
Закон Гука является примером линейной зависимости перемещения от растягивающей силы F = - сx. Нелинейными упругими свойствами обладают, например, высокоэластичные резиновые шнуры – ели такой шнур растянуть в десять раз (ε = 0,9), а затем отпустить, он восстановит свою длину. Если длинные металлические проволоки подвергать малым деформациям (ε = 0,001), нелинейность не обнаруживается. При растяжении металлического стержня по мере возрастания растягивающего напряжения деформация ε сначала растет по линейному закону. Это означает, что при таких ε первый член разложения функции = f (ε) (полагая ее аналитической) в степенной ряд = ε ∂f /∂ε + ½! ε2∂2f /∂ε2 + ... значительно превосходит все остальные. Тогда = Еε (Е – модуль упругости материала при его одноосном сжатии). Нелинейный закон – параболическая зависимость = Аε - Вε2.
- 1 Методологические основы моделирования сложных систем
- 1.1 Системность
- Понятия общей теории систем
- Определение понятия системы
- Основные свойства, обязательные для любой системы.
- Взаимодействие и взаимозависимость системы и внешней среды.
- Определение понятий элементов, связей, функций, внешней среды системы. Элемент
- Внешняя среда
- Функции системы
- Сложность систем
- Системный подход
- Классификация систем
- Развитие искусственной системы и ее жизненный цикл
- 1.2 Моделирование
- Общая методология моделирования
- Основные принципы моделирования:
- Процесс моделирования
- Анализ и синтез в моделировании
- Примеры сложных систем Космическая система наблюдения Земли как сложная техническая система Задачи космической системы наблюдения Земли
- Состав и структура космической системы наблюдения Земли
- 2 Построение математических моделей
- 2.1 Математическая модель, математическое моделирование – основные понятия, термины и определения
- Цели математического моделирования
- 2.2 Общие методы построения математической модели
- Микроподход и макроподход в исследованиях системы.
- Формальная запись модели системы
- Понятие вариационных принципов
- Модульное построение моделей
- 2.3 Требования к построению модели
- Адекватность и достоверность модели
- Равнозначимость внешнего и внутреннего правдоподобия
- Анализ чувствительности модели
- Пример анализа на чувствительность экономической задачи
- 3 Математические модели состояния и структуры системы
- 3.1 Модель состояния системы Состояние системы и ее функционирование
- Формализация процесса функционирования системы
- 3.2 Модель структуры системы Основные понятия структуры системы
- Модель состава и структуры системы
- Методология моделирования структуры системы
- Виды структур
- Формирование структуры модели с позиций структурного моделирования.
- Построение структурных моделей
- 3.3 Модель процесса функционирования
- Установление функциональных зависимостей
- Неопределенность функционирования системы
- Пути уменьшения неопределенностей
- Основные требования к модели процесса функционирования
- Анализ функционирования, анализ структуры технической системы
- Функционально – физический анализ технических объектов.
- Пример разработки моделей деятельности организации
- Пример функционально – физического анализа технических объектов
- Конструкция бытовой электроплитки
- Функционально стоимостной анализ.
- 4 Этапы построения моделей
- 4.1 Постановка задачи моделирования
- Разработка содержательной модели
- Разработка концептуальной модели
- Описание внешних воздействий
- Декомпозиция системы
- Подготовка исходных данных для математической модели
- Содержание концептуальной модели
- 4.2 Разработка математической модели
- Разработка функциональных соотношений
- Выбор метода решения задачи
- Проверка и корректировка модели
- Анализ чувствительности модели
- Проверка адекватности модели
- Контроль модели
- Корректировка модели
- Уточнение модели проектируемого объекта
- Реализация математической модели в виде программ для эвм
- 4.3 Практическое использование построенной модели и анализ результатов моделирования
- Примеры построения моделей Математическая реставрация Тунгусского феномена
- 1. Сбор информации о явлении, выдвижение гипотез.
- 2. Содержательная постановка задачи исследования явления.
- 3. Математическая постановка задачи.
- 4. Анализ результатов.
- 5. Проверка адекватности модели – сравнение с натурным экспериментом.
- 6. Анализ результатов.
- Прогноз климатических изменений
- 1. Содержательная постановка задачи
- 2. Концептуальная постановка. Построение математической модели.
- 3. Проведение вычислительного эксперимента.
- 4. Анализ результатов вычислительного эксперимента.
- 5 Виды математических моделей
- 5.1 Классификация математических моделей
- Пример представления модели различной сложности и классификации.
- 5.2 Классификация математических моделей в зависимости от оператора модели
- Линейные и нелинейные модели
- Обыкновенные дифференциальные модели
- 5.3 Классификация математических моделей в зависимости от параметров модели Непрерывные и дискретные модели
- Детерминированные и неопределенные модели
- Дискретно-детерминированная модель
- Статические и динамические модели
- Стационарные и нестационарные модели.
- Формализация системы в виде автомата
- Формализация системы в виде агрегата
- Моделирование процесса функционирования агрегата
- Моделирование агрегативных систем
- Модель сопряжения элементов
- 6 Математические модели распределения ресурсов в исследовании операций
- 6.1 Моделирование операций распределения ресурсов
- Формулировка задачи математического программирования
- 6.2 Модели линейного программирования
- Формулировка общей задачи линейного программирования.
- Типовые задачи линейного программирования
- Транспортная задача.
- Задача коммивояжера.
- Задача о ранце.
- Общая задача теории расписаний.
- Примеры сведения практических задач к канонической транспортной задаче
- 6.3 Распределительные задачи линейного программирования
- Примеры распределительных задач.
- Распределение транспортных единиц по линиям
- Выбор средств доставки грузов.
- Задача о назначениях
- Экономическая интерпретация задач линейного программирования.
- Перевозки взаимозаменяемых продуктов
- Перевозка неоднородного продукта на разнородном транспорте.
- 7 Математические модели физических явлений и процессов. Универсальность моделей
- 7.1 Математические модели на основе фундаментальных законов
- Теоретический метод составления математических моделей
- Основные фундаментальные законы механики
- Работа, энергия, мощность
- 7.2 Уравнения движения
- Динамика поступательного движения.
- 7.3 Уравнения состояния
- Термодинамическая система.
- Упругие свойства твердых тел.
- Жидкости.
- 7.4 Универсальность моделей
- Модели на основе аналогий
- Типовые математические модели элементов и подсистем
- Модель колебательного процесса
- Модель консервативной системы.
- Электрическая подсистема.
- Модели элементов гидравлических систем
- Модели элементов пневматических систем
- 8 Моделирование производственных процессов
- 8.1 Модели систем массового обслуживания
- Основные элементы систем массового обслуживания.
- Характеристики потока
- Классификация смо
- Оценка эффективности смо
- Аналитические и статистические модели
- 8.2 Модели производственных процессов
- Дискретный производственный процесс
- Непрерывный производственный процесс
- Агрегатное представление производственного процесса
- Имитационное моделирование процессов функционирования
- Формализация основных операций производственного процесса Формализованная схема дискретного производственного процесса.
- Формализация отклонения течения производственного процесса от нормального
- Моделирование комплексного процесса обработки, сборки и управления при поточном производстве
- Формализованная схема непрерывного производственного процесса.
- 9 Синтез модели (проекта) системы
- 9.1 Проектирование системы как процесс создания (синтеза) ее модели
- 9.2 Методология проектирования
- Типовые проектные процедуры формирования облика системы
- 9.3 Эффективность системы Понятие эффективности системы
- Формирование модели цели системы
- Выбор критериев и показателей эффективности
- Основные принципы выбора критериев эффективности:
- Проблемы многокритериальности
- 9.4 Технология проектирования
- 9.5 Принятие решений в проектировании
- Выбор в условиях неопределенности
- Моделирование принятия решения
- Прогнозирование в принятии решений
- 9.6 Анализ инвестиционной привлекательности системы Основные типы инвестиций.
- Основные экономические концепции инвестиционного анализа.
- Состав работ при инвестиционном проектировании
- Конкурентоспособность проектируемой системы Оценка потенциальной емкости рынка и потенциального объема продаж
- Оценка конкурентоспособности
- Методы оценки эффективности инвестиций
- Метод определения чистой текущей стоимости.
- Метод расчета рентабельности инвестиций
- Метод расчета внутренней нормы прибыли
- Расчет периода окупаемости инвестиций
- Маркетинг и управление проектом
- Задачи управления проектами
- 9.7 Особенности синтеза модели (проекта) технических систем Этапы проектирования
- Особенности проектирования адаптивных систем
- Моделирование функционирования технической системы Особенности построения моделей при проектировании
- Формирование технического облика системы
- Формирование структуры системы
- Выбор основных проектных параметров системы
- Формирование множества вариантов системы
- 10 Информационное обеспечение синтеза системы
- 10.1 Основные задачи и типы информационных систем Общие свойства информационных систем
- Файл-серверные информационные системы
- Клиент-серверные информационные системы
- Архитектура Интернет/Интранет
- Хранилища данных и системы оперативной аналитической обработки данных
- 10.2 Особенности проектирования информационных систем
- Схемы разработки проекта
- 1. Предпроектные исследования
- 2 Постановка задачи
- 3 Проектирование системы
- Архитектура программного обеспечения
- Подсистема администрирования.
- Техническая архитектура
- Организационное обеспечение системы
- 4 Реализация и внедрение системы
- 10.3 Концепции автоматизации проектирования
- История развития сапр
- Классификация сапр
- Стратегическое развитие сапр Современное состояние сапр
- Направления разработки проектной составляющей сапр
- Разновидности сапр
- Математическое и информационное обеспечение сапр
- 11 Моделирование процесса управления
- 11.1 Основные определения
- Формальная запись системы с управлением
- 11.2 Модели систем автоматического управления
- Устойчивость движения систем
- Определение программного движения и управление движением
- 11.3 Модели автоматизированных систем управления
- Модели автоматизированных систем управления производственными процессами
- Модели автоматизированных систем управления предприятием