Функционально – физический анализ технических объектов.
Технический объект разделяется на элементы, каждый из которых имеет вполне определенную функцию по обеспечению работы объекта или его элементов. Элементарная физическая операция может быть реализована с помощью одного физико-технического эффекта. Предельное разделение объекта возможно до неделимых элементов с минимальным числом функций. Среди всех элементов особое внимание уделяется главным элементам (обозначается Е0). Элементы объекта обозначаются Е0,Е1, ... ЕN.
Цель функционально-физического анализа - определение, на основе каких физико-технических эффектов работает каждый элемент, анализ функций и физических операций (преобразований) и как элементы функционально связаны между собой.
Конструктивная функциональная структура представляет собой ориентированный граф, вершинами которого являются наименования элементов, ребрами — функции элементов.
Функционально – физический анализ направлен на изучение:
- функций каждого элемента технического объекта и функциональных связей элементов между собой;
- физических операций (преобразования) каждого элемента технического объекта и как элементы функционально связаны между собой;
- физико-технических эффектов, законов, зависимостей на основе которых работает каждый элемент технического объекта и как они взаимосвязаны между собой.
Построение конструктивной функциональной структуры является первым этапом функционально – физического анализа Любой технический объект можно разделить на несколько элементов каждый из которых имеет вполне определенную функцию по обеспечению работы объекта или его элементов. Предельное разделение возможно до неделимых элементов с минимальным числом функции.
Конструктивная функциональная структура представляет собой ориентированный граф, вершинами которого являются наименования элементов объекта, а ребрами — функции элементов.
Аналогично анализу функций технического объекта может быть проведен анализ технологических процессов. При этом для технологических процессов функциональная структура представляет собой граф вершинами которого являются обрабатываемые объекты, а ребрами элементарные операции с указанием режимов обработки.
Технология или процесс - способ, метод или программа преобразования вещества, энергии или информации из заданного начального состояния в заданное конечное состояние с помощью определённых технических объектов.
Функциональная структура представляет собой граф, вершинами которого являются наименования элементов объекта или наименования операций, а ребрами - входные АТ и выходные СТ потоки (факторы).
Технический объект или соответствующие человеко-машинные системы состоят из четырех типов подсистем (элементов) S1, S2, S3, S4, реализующих соответственно четыре типовые функции:
S1 (Ф1) – подсистема, реализующая технологическую функцию - обеспечивает превращение исходного материала А0 в конечный продукт Ак .
S2 (Ф2) – подсистема, реализующая энергетическую функцию – превращает вещество или извне полученную энергию W0 в конечный вид энергии Wк необходимый для реализации функции Ф1.
S3 (Ф3) – подсистема, реализующая функцию управления - осуществляет управляющие воздействия U1, U2 на подсистемы S1,S2 в соответствии с заданной программой Q и полученной информацией U10,U20 о количестве и качестве выработанных конечного продукта Ak и конечной энергии WK.
S4 (Ф4) –- подсистема, реализующая функцию планирования - собирает информацию Q0 о произведенном конечном продукте Ak и определяет потребные Q качественные и количественные характеристики конечного продукта.
п оток вещества
п оток энергии;
п оток управляющих сигналов
и воздействий
Функциональная структура преобразования энергии и информации.
Для одной системы может быть сформировано множество различных взаимосвязанных между собой компонентов структуры (подструктур). Например, в структуре общества имеются экономическая, политическая, социальная и другие тесно взаимосвязанные подструктуры.
Аналогично анализу функций технического объекта может быть проведен анализ технологических процессов. При этом для технологических процессов функциональная структура представляет собой граф вершинами которого являются обрабатываемые объекты, а ребрами элементарные операции с указанием режимов обработки.
Множественности структур системы: переход к структуре системы может быть осуществлен только при условии, что найдены элементы и их устойчивые отношения. Причем, как правило, существует большое число критериев, по которым выбираются составляющие систему элементы.
Структурная и функциональная модели дополняют и соответствуют друг другу – каждому элементу приписывается функция, каждую функцию выполняет элемент.
Структурно-функциональная модель описывает элементы, связи и присущие им функции.
Элементы (или подсистемы) связаны структурными соотношениями (могут быть представлены в виде схем, карт, диаграмм), которым соответствуют функции.
Помимо функциональных модулей, в структурную схему могут включаться логические блоки, позволяющие изменять характер функционирования в зависимости от того, выполняются или нет некоторые заранее заданные условия.
Структурно-функциональные модели – статические модели – они, не описывают процесс функционирования системы (зависимость изменения свойств системы от времени, начальных и граничных условий).
В зависимости от задач исследования системы в понятие структуры включаются различные аспекты функционирования системы.
Пример.
Структура производственной системы – устойчивое пространственно-временное распределение хозяйственных решений и обеспечивающих их реализацию ресурсов с соответствующими взаимосвязями.
Структура производства – определение множества устройств (элементов) и распределение задач между ними для производства технической системы.
Структура организационной системы – форма распределения задач и полномочий по принятию решений лицами (группами лиц – подразделениями), составляющих организационную систему (организацию), направленная на достижение целей, стоящих перед организацией.
Каждый объект или связь имеет также набор характеристик, при помощи которых можно задать количественные и качественные характеристики моделируемых элементов.
При анализе организационной структуры производственно-экономической системы решаются следующие задачи:
описание состава организации и построение её структурной схемы;
определение функций отдельных подразделений, раскрытие их структурной схемы;
описание материальных, вещественных и информационных связей;
построение обобщённой структурной информационной модели предприятия;
При анализе функциональной структуры решаются задачи:
изучаются функции управления в структурных подразделениях существующей системы;
выбирается состав автоматизированных функций;
определяются их взаимосвязи;
составляется обобщённая функциональная структура задач управления АСУП;
При анализе технической структуры решаются задачи:
определяются основные элементы, участвующие в основных информационных процессах: регистрации и подготовки информации, сборе и передаче, хранении и обработке, воспроизведении и выдаче информации;
составляется формальная структурная модель системы технических средств с учётом топологии расположения элементов и энергетического взаимодействия их как между собой, так и с внешней средой.
Формирование модели структурной схемы (наряду с моделью функционирования) является частью решения общей задачи структурного анализа системы и строится исходя из целей и задач структурного анализа.
Общая задача структурного системного анализа состоит в том, чтобы исходя из заданного описания элементов системы и непосредственных связей между ними, получить заключение о структурных свойствах системы в целом и основных её подсистем.
В основе структурного анализа лежит выявление структуры как относительно устойчивой совокупности отношений, признание методологического примата отношений над элементами в системе, частичное отвлечение от развития объектов.
Содержательная модель структуры предполагает описания: состав системы (перечень элементов), направления связей, типы связей (материальная, энергетическая, информационная). Основная сложность при этом – обоснование числа связей, наиболее существенных для целей моделирования.
Анализ функционирования системы и анализ ее структуры - две взаимосвязанные стадии исследования (поскольку связаны между собой структурные и функциональные свойства системы): зная законы функционирования отдельных элементов, но не зная структуры системы, нельзя представить систему как целое и понять, как она функционирует.
Структурно-функциональная модель описывает элементы, связи и присущие им функции.
Элементы (или подсистемы) связаны структурными соотношениями (могут быть представлены в виде схем, карт, диаграмм), которым соответствуют функции.
Помимо функциональных модулей, в структурную схему могут включаться логические блоки, позволяющие изменять характер функционирования в зависимости от того, выполняются или нет некоторые заранее заданные условия.
Структурно-функциональные модели – статические модели – они, не описывают процесс функционирования системы (зависимость изменения свойств системы от времени, начальных и граничных условий).
Функциональные, геометрические и функционально-геометрические модели отражают соответственно только функциональные, только пространственные и одновременно функциональные и пространственные свойства оригинала.
Модель строится в виде логической структурной схемы системы по модульному принципу - в виде совокупности стандартных блоков-модулей. При этом можно строить и совершенствовать модель итерационным методом, добавляя к основной схеме блок за блоком. Каждая модель может быть разделена на блоки, а блоки — на подблоки. Этот процесс деления блоков на подблоки продолжается до необходимого уровня детализации описания системы. Таким образом, модель функционально подразделяется на подмодели.
- 1 Методологические основы моделирования сложных систем
- 1.1 Системность
- Понятия общей теории систем
- Определение понятия системы
- Основные свойства, обязательные для любой системы.
- Взаимодействие и взаимозависимость системы и внешней среды.
- Определение понятий элементов, связей, функций, внешней среды системы. Элемент
- Внешняя среда
- Функции системы
- Сложность систем
- Системный подход
- Классификация систем
- Развитие искусственной системы и ее жизненный цикл
- 1.2 Моделирование
- Общая методология моделирования
- Основные принципы моделирования:
- Процесс моделирования
- Анализ и синтез в моделировании
- Примеры сложных систем Космическая система наблюдения Земли как сложная техническая система Задачи космической системы наблюдения Земли
- Состав и структура космической системы наблюдения Земли
- 2 Построение математических моделей
- 2.1 Математическая модель, математическое моделирование – основные понятия, термины и определения
- Цели математического моделирования
- 2.2 Общие методы построения математической модели
- Микроподход и макроподход в исследованиях системы.
- Формальная запись модели системы
- Понятие вариационных принципов
- Модульное построение моделей
- 2.3 Требования к построению модели
- Адекватность и достоверность модели
- Равнозначимость внешнего и внутреннего правдоподобия
- Анализ чувствительности модели
- Пример анализа на чувствительность экономической задачи
- 3 Математические модели состояния и структуры системы
- 3.1 Модель состояния системы Состояние системы и ее функционирование
- Формализация процесса функционирования системы
- 3.2 Модель структуры системы Основные понятия структуры системы
- Модель состава и структуры системы
- Методология моделирования структуры системы
- Виды структур
- Формирование структуры модели с позиций структурного моделирования.
- Построение структурных моделей
- 3.3 Модель процесса функционирования
- Установление функциональных зависимостей
- Неопределенность функционирования системы
- Пути уменьшения неопределенностей
- Основные требования к модели процесса функционирования
- Анализ функционирования, анализ структуры технической системы
- Функционально – физический анализ технических объектов.
- Пример разработки моделей деятельности организации
- Пример функционально – физического анализа технических объектов
- Конструкция бытовой электроплитки
- Функционально стоимостной анализ.
- 4 Этапы построения моделей
- 4.1 Постановка задачи моделирования
- Разработка содержательной модели
- Разработка концептуальной модели
- Описание внешних воздействий
- Декомпозиция системы
- Подготовка исходных данных для математической модели
- Содержание концептуальной модели
- 4.2 Разработка математической модели
- Разработка функциональных соотношений
- Выбор метода решения задачи
- Проверка и корректировка модели
- Анализ чувствительности модели
- Проверка адекватности модели
- Контроль модели
- Корректировка модели
- Уточнение модели проектируемого объекта
- Реализация математической модели в виде программ для эвм
- 4.3 Практическое использование построенной модели и анализ результатов моделирования
- Примеры построения моделей Математическая реставрация Тунгусского феномена
- 1. Сбор информации о явлении, выдвижение гипотез.
- 2. Содержательная постановка задачи исследования явления.
- 3. Математическая постановка задачи.
- 4. Анализ результатов.
- 5. Проверка адекватности модели – сравнение с натурным экспериментом.
- 6. Анализ результатов.
- Прогноз климатических изменений
- 1. Содержательная постановка задачи
- 2. Концептуальная постановка. Построение математической модели.
- 3. Проведение вычислительного эксперимента.
- 4. Анализ результатов вычислительного эксперимента.
- 5 Виды математических моделей
- 5.1 Классификация математических моделей
- Пример представления модели различной сложности и классификации.
- 5.2 Классификация математических моделей в зависимости от оператора модели
- Линейные и нелинейные модели
- Обыкновенные дифференциальные модели
- 5.3 Классификация математических моделей в зависимости от параметров модели Непрерывные и дискретные модели
- Детерминированные и неопределенные модели
- Дискретно-детерминированная модель
- Статические и динамические модели
- Стационарные и нестационарные модели.
- Формализация системы в виде автомата
- Формализация системы в виде агрегата
- Моделирование процесса функционирования агрегата
- Моделирование агрегативных систем
- Модель сопряжения элементов
- 6 Математические модели распределения ресурсов в исследовании операций
- 6.1 Моделирование операций распределения ресурсов
- Формулировка задачи математического программирования
- 6.2 Модели линейного программирования
- Формулировка общей задачи линейного программирования.
- Типовые задачи линейного программирования
- Транспортная задача.
- Задача коммивояжера.
- Задача о ранце.
- Общая задача теории расписаний.
- Примеры сведения практических задач к канонической транспортной задаче
- 6.3 Распределительные задачи линейного программирования
- Примеры распределительных задач.
- Распределение транспортных единиц по линиям
- Выбор средств доставки грузов.
- Задача о назначениях
- Экономическая интерпретация задач линейного программирования.
- Перевозки взаимозаменяемых продуктов
- Перевозка неоднородного продукта на разнородном транспорте.
- 7 Математические модели физических явлений и процессов. Универсальность моделей
- 7.1 Математические модели на основе фундаментальных законов
- Теоретический метод составления математических моделей
- Основные фундаментальные законы механики
- Работа, энергия, мощность
- 7.2 Уравнения движения
- Динамика поступательного движения.
- 7.3 Уравнения состояния
- Термодинамическая система.
- Упругие свойства твердых тел.
- Жидкости.
- 7.4 Универсальность моделей
- Модели на основе аналогий
- Типовые математические модели элементов и подсистем
- Модель колебательного процесса
- Модель консервативной системы.
- Электрическая подсистема.
- Модели элементов гидравлических систем
- Модели элементов пневматических систем
- 8 Моделирование производственных процессов
- 8.1 Модели систем массового обслуживания
- Основные элементы систем массового обслуживания.
- Характеристики потока
- Классификация смо
- Оценка эффективности смо
- Аналитические и статистические модели
- 8.2 Модели производственных процессов
- Дискретный производственный процесс
- Непрерывный производственный процесс
- Агрегатное представление производственного процесса
- Имитационное моделирование процессов функционирования
- Формализация основных операций производственного процесса Формализованная схема дискретного производственного процесса.
- Формализация отклонения течения производственного процесса от нормального
- Моделирование комплексного процесса обработки, сборки и управления при поточном производстве
- Формализованная схема непрерывного производственного процесса.
- 9 Синтез модели (проекта) системы
- 9.1 Проектирование системы как процесс создания (синтеза) ее модели
- 9.2 Методология проектирования
- Типовые проектные процедуры формирования облика системы
- 9.3 Эффективность системы Понятие эффективности системы
- Формирование модели цели системы
- Выбор критериев и показателей эффективности
- Основные принципы выбора критериев эффективности:
- Проблемы многокритериальности
- 9.4 Технология проектирования
- 9.5 Принятие решений в проектировании
- Выбор в условиях неопределенности
- Моделирование принятия решения
- Прогнозирование в принятии решений
- 9.6 Анализ инвестиционной привлекательности системы Основные типы инвестиций.
- Основные экономические концепции инвестиционного анализа.
- Состав работ при инвестиционном проектировании
- Конкурентоспособность проектируемой системы Оценка потенциальной емкости рынка и потенциального объема продаж
- Оценка конкурентоспособности
- Методы оценки эффективности инвестиций
- Метод определения чистой текущей стоимости.
- Метод расчета рентабельности инвестиций
- Метод расчета внутренней нормы прибыли
- Расчет периода окупаемости инвестиций
- Маркетинг и управление проектом
- Задачи управления проектами
- 9.7 Особенности синтеза модели (проекта) технических систем Этапы проектирования
- Особенности проектирования адаптивных систем
- Моделирование функционирования технической системы Особенности построения моделей при проектировании
- Формирование технического облика системы
- Формирование структуры системы
- Выбор основных проектных параметров системы
- Формирование множества вариантов системы
- 10 Информационное обеспечение синтеза системы
- 10.1 Основные задачи и типы информационных систем Общие свойства информационных систем
- Файл-серверные информационные системы
- Клиент-серверные информационные системы
- Архитектура Интернет/Интранет
- Хранилища данных и системы оперативной аналитической обработки данных
- 10.2 Особенности проектирования информационных систем
- Схемы разработки проекта
- 1. Предпроектные исследования
- 2 Постановка задачи
- 3 Проектирование системы
- Архитектура программного обеспечения
- Подсистема администрирования.
- Техническая архитектура
- Организационное обеспечение системы
- 4 Реализация и внедрение системы
- 10.3 Концепции автоматизации проектирования
- История развития сапр
- Классификация сапр
- Стратегическое развитие сапр Современное состояние сапр
- Направления разработки проектной составляющей сапр
- Разновидности сапр
- Математическое и информационное обеспечение сапр
- 11 Моделирование процесса управления
- 11.1 Основные определения
- Формальная запись системы с управлением
- 11.2 Модели систем автоматического управления
- Устойчивость движения систем
- Определение программного движения и управление движением
- 11.3 Модели автоматизированных систем управления
- Модели автоматизированных систем управления производственными процессами
- Модели автоматизированных систем управления предприятием