logo
Мат мод консп сум-2012

Стационарные и нестационарные модели.

Стационарные системы – такие системы, свойства которых не изменяются во времени.

Реакция стационарной системы на любой заданный тип возмущения зависит только от интервала времени между моментом начала действия входного возмущения и данным моментом времени, т.е. свойство стационарности означает, что процесс преобразования входных сигналов инвариантен относительно сдвига, как от текущего времени, так и от момента приложения входного сигнала. Реакция нестационарной системы зависит как от текущего времени, так и от момента приложения входного сигнала. В этом случае при сдвиге входного сигнала во времени (без изменения его формы) выходные сигналы не только сдвигаются во времени, но и изменяют свою форму.

Примеры стационарных моделей.

При ламинарном течении жидкости (скорость течения невелика) в длинной трубе постоянного сечения на достаточно большом удалении от входа частицы жидкости движутся параллельно оси трубы, и профиль скоростей частиц в сечении остается с течением времени неизменным – параметры модели не зависят от времени.

Термодинамическое равновесие обшивки самолета при полете в плотных слоях атмосферы. Обшивка, получая тепловую энергию от воздушного потока, одновременно излучает ее в окружающее пространство, в соответствии с законом Стефана-Больцмана тем больше, чем выше ее температура (εТ = σ Т4, εТ – интегральная излучательная способность – энергия излучения с единицы поверхности в единицу времени, σ – постоянная).

В общем случае состояние системы z (t) и выход системы y (t) являются функциями не только z (t0), и Хt0t, но и самого интервала t0t:

z (t) = α (t0t, z (t0), Хt0t); у (t) = β (t0t, z (t0), Хt0t).

При одних и тех же значениях z (t0), и Хt0t, перемещая по оси времени интервал t0t, можно получить различные значения z (t) и y (t).

Введем в рассмотрение оператор сдвига , применение которого к произвольной величине приводит к ее сдвигу вдоль оси времени на интервал .

Система называется стационарной, если для операторов перехода и выхода выполняются условия:

z (t) = α ( t0t, z (t0), Хt0t) = z (t);

у (t) = β ( t0t, z (t0), Хt0t) = у (t).

На рисунке 3.1 представлено второе из условий, согласно которому должно выполняться равенство у (t) =  у (t).

Для стационарной системы модель функционирования можно записать в виде, независимом от t0t:

z  (t) = α (z (t0), Хt0t); у (t) = β (z (t0), Хt0t).

Стационарные модели применяются для описания различных потоков (жидкости, газа, тепла) в случае постоянства условий на входе и выходе потока.

В нестационарной модели время – одно из существенных переменных. Например, движение жидкости в трубе при изменении параметров на входе (изменение скорости при истечении жидкости из сосуда).

Стационарные математические модели описывают системы, в которых протекают так называемые установившиеся процессы – процессы, в которых интересующие нас параметры постоянны во времени.

К установившимся (стационарным) относят и периодические процессы, в которых некоторые выходные параметры остаются неизменными.

Например, математическая модель маятника является стационарной по отношению к независящим от времени периоду и полуразмаху колебаний, хотя материальная точка перемещается во времени относительно положения равновесия.

Частным случаем стационарных моделей являются модели статические, которые включают описание связей между основными переменными процесса в установившихся режимах (в равновесном состоянии без изменения во времени).

Например, математическое описание статики химико-технологического процесса состоит обычно из трех видов уравнений: материального и теплового балансов, термодинамического равновесия системы (характеристика движущей силы) и скоростей протекания процессов (химических реакций, тепло- и массопередачи и т.п.).

Для расчетов медленных процессов или процессов, протекающих с небольшими отклонениями от стабильных условий, принимается допущение, позволяющее считать процесс установившимся.

Подобное допущение принимается, например, для расчета теплового баланса турбины при половинной, трехчетвертной или полной нагрузке или для решения методами линейного программирования задачи смешения материалов.

Стационарные математические модели (кроме статических) обычно состоят из дифференциальных уравнений, статические – из уравнений алгебраических.

Одним из классификационных признаков моделируемой системы является мощность множества состояний моделируемой системы. По этому признаку системы делят на статические и динамические. Система называется статической, если множество ее состояний содержит один элемент. Если состояний больше одного, или они могут изменяться во времени, система называется динамической. Процесс смены состояний называется движением системы.

Различают два основных типа динамических систем: с дискретным (множество состояний конечно или счетно) или с непрерывным множеством состояний.

В детерминированных системах новое состояние зависит только от времени и текущего состояния системы. Другими словами, если имеются условия, определяющие переход системы в новое состояние, то для детерминированной системы можно однозначно указать, в какое именно состояние она перейдет.

Для стохастической системы можно указать лишь множество возможных состояний перехода и, в некоторых случаях, - вероятностные характеристики перехода в каждое из этих состояний.

Схема классификации систем важна не сама по себе. На этапе разработки концептуальной модели она, во-первых, позволяет уточнить цели и задачи моделирования и, во-вторых, облегчает переход к этапу формализации модели. Кроме того, на этапе оценки качества разработанной модели, знание классификационных признаков дает возможность оценить степень ее соответствия первоначальному замыслу разработчика.

Исследуемая система и ее модель могут относиться как к одному классу, так и к разным классам. Например, реальная система может быть подвержена воздействию случайных факторов и, соответственно, будет относиться к классу стохастических систем. Если разработчик модели считает, что влиянием этих факторов можно пренебречь, то создаваемая модель будет представлять собой детерминированную систему. Аналогичным образом возможно отображение системы с непрерывным временем смены состояний в модель с дискретными переходами и т. д.

Рассмотрим классификацию технических систем, параметры которых определяют соответствующий класс моделей.

Исследуемый объект (процесс) может быть распределенным или сосредоточенным в пространстве и одновременно изменяться во времени. Соответственно могут быть модели с распределенными и сосредоточенными в пространстве параметрами.

Если основные переменные процесса не изменяются в пространстве, а только во времени и не зависят от прочих координат, то математическая модель, описывающая такие процессы - модель с сосредоточенными параметрами. Такие модели представляются в виде обыкновенных дифференциальных уравнений.

Для систем с распределенными параметрами переменные зависят как от времени, так и от прочих координат. В зависимости от задачи одна и та же система может рассматриваться и как система с сосредоточенными параметрами и как система с распределенными параметрами. Например, нельзя указать точные границы для тока в проводе. Что касается классов моделей, то здесь имеется четкая граница. Системы с распределенными параметрами описываются с помощью дифференциальных уравнений в частных производных.

Если процесс развивается одновременно и во времени, и в пространстве (по одной координате l), то оператор А может преобразовывать входную векторную функцию X(t, l) в выходную векторную функцию Y(t, l) и зависеть от обоих аргументов: A=A(t,l).

Пример. Рассмотрим твердый брус, нагреваемый с одной стороны и изолированный с другой. Соотношение между температурой, временем и расстоянием от точки нагрева описывается дифференциальным уравнением в частных производных Температура в этом уравнении является функцией двух переменных: времени t и расстояния l, т.е. в любой момент времени ti температура изменяется с изменением расстояния li. или, наоборот, в любом месте li температура изменяется со временем.