Стационарные и нестационарные модели.
Стационарные системы – такие системы, свойства которых не изменяются во времени.
Реакция стационарной системы на любой заданный тип возмущения зависит только от интервала времени между моментом начала действия входного возмущения и данным моментом времени, т.е. свойство стационарности означает, что процесс преобразования входных сигналов инвариантен относительно сдвига, как от текущего времени, так и от момента приложения входного сигнала. Реакция нестационарной системы зависит как от текущего времени, так и от момента приложения входного сигнала. В этом случае при сдвиге входного сигнала во времени (без изменения его формы) выходные сигналы не только сдвигаются во времени, но и изменяют свою форму.
Примеры стационарных моделей.
При ламинарном течении жидкости (скорость течения невелика) в длинной трубе постоянного сечения на достаточно большом удалении от входа частицы жидкости движутся параллельно оси трубы, и профиль скоростей частиц в сечении остается с течением времени неизменным – параметры модели не зависят от времени.
Термодинамическое равновесие обшивки самолета при полете в плотных слоях атмосферы. Обшивка, получая тепловую энергию от воздушного потока, одновременно излучает ее в окружающее пространство, в соответствии с законом Стефана-Больцмана тем больше, чем выше ее температура (εТ = σ Т4, εТ – интегральная излучательная способность – энергия излучения с единицы поверхности в единицу времени, σ – постоянная).
В общем случае состояние системы z (t) и выход системы y (t) являются функциями не только z (t0), и Хt0t, но и самого интервала t0t:
z (t) = α (t0t, z (t0), Хt0t); у (t) = β (t0t, z (t0), Хt0t).
При одних и тех же значениях z (t0), и Хt0t, перемещая по оси времени интервал t0t, можно получить различные значения z (t) и y (t).
Введем в рассмотрение оператор сдвига , применение которого к произвольной величине приводит к ее сдвигу вдоль оси времени на интервал .
Система называется стационарной, если для операторов перехода и выхода выполняются условия:
z (t) = α ( t0t, z (t0), Хt0t) = z (t);
у (t) = β ( t0t, z (t0), Хt0t) = у (t).
На рисунке 3.1 представлено второе из условий, согласно которому должно выполняться равенство у (t) = у (t).
Для стационарной системы модель функционирования можно записать в виде, независимом от t0t:
z (t) = α (z (t0), Хt0t); у (t) = β (z (t0), Хt0t).
Стационарные модели применяются для описания различных потоков (жидкости, газа, тепла) в случае постоянства условий на входе и выходе потока.
В нестационарной модели время – одно из существенных переменных. Например, движение жидкости в трубе при изменении параметров на входе (изменение скорости при истечении жидкости из сосуда).
Стационарные математические модели описывают системы, в которых протекают так называемые установившиеся процессы – процессы, в которых интересующие нас параметры постоянны во времени.
К установившимся (стационарным) относят и периодические процессы, в которых некоторые выходные параметры остаются неизменными.
Например, математическая модель маятника является стационарной по отношению к независящим от времени периоду и полуразмаху колебаний, хотя материальная точка перемещается во времени относительно положения равновесия.
Частным случаем стационарных моделей являются модели статические, которые включают описание связей между основными переменными процесса в установившихся режимах (в равновесном состоянии без изменения во времени).
Например, математическое описание статики химико-технологического процесса состоит обычно из трех видов уравнений: материального и теплового балансов, термодинамического равновесия системы (характеристика движущей силы) и скоростей протекания процессов (химических реакций, тепло- и массопередачи и т.п.).
Для расчетов медленных процессов или процессов, протекающих с небольшими отклонениями от стабильных условий, принимается допущение, позволяющее считать процесс установившимся.
Подобное допущение принимается, например, для расчета теплового баланса турбины при половинной, трехчетвертной или полной нагрузке или для решения методами линейного программирования задачи смешения материалов.
Стационарные математические модели (кроме статических) обычно состоят из дифференциальных уравнений, статические – из уравнений алгебраических.
Одним из классификационных признаков моделируемой системы является мощность множества состояний моделируемой системы. По этому признаку системы делят на статические и динамические. Система называется статической, если множество ее состояний содержит один элемент. Если состояний больше одного, или они могут изменяться во времени, система называется динамической. Процесс смены состояний называется движением системы.
Различают два основных типа динамических систем: с дискретным (множество состояний конечно или счетно) или с непрерывным множеством состояний.
В детерминированных системах новое состояние зависит только от времени и текущего состояния системы. Другими словами, если имеются условия, определяющие переход системы в новое состояние, то для детерминированной системы можно однозначно указать, в какое именно состояние она перейдет.
Для стохастической системы можно указать лишь множество возможных состояний перехода и, в некоторых случаях, - вероятностные характеристики перехода в каждое из этих состояний.
Схема классификации систем важна не сама по себе. На этапе разработки концептуальной модели она, во-первых, позволяет уточнить цели и задачи моделирования и, во-вторых, облегчает переход к этапу формализации модели. Кроме того, на этапе оценки качества разработанной модели, знание классификационных признаков дает возможность оценить степень ее соответствия первоначальному замыслу разработчика.
Исследуемая система и ее модель могут относиться как к одному классу, так и к разным классам. Например, реальная система может быть подвержена воздействию случайных факторов и, соответственно, будет относиться к классу стохастических систем. Если разработчик модели считает, что влиянием этих факторов можно пренебречь, то создаваемая модель будет представлять собой детерминированную систему. Аналогичным образом возможно отображение системы с непрерывным временем смены состояний в модель с дискретными переходами и т. д.
Рассмотрим классификацию технических систем, параметры которых определяют соответствующий класс моделей.
Исследуемый объект (процесс) может быть распределенным или сосредоточенным в пространстве и одновременно изменяться во времени. Соответственно могут быть модели с распределенными и сосредоточенными в пространстве параметрами.
Если основные переменные процесса не изменяются в пространстве, а только во времени и не зависят от прочих координат, то математическая модель, описывающая такие процессы - модель с сосредоточенными параметрами. Такие модели представляются в виде обыкновенных дифференциальных уравнений.
Для систем с распределенными параметрами переменные зависят как от времени, так и от прочих координат. В зависимости от задачи одна и та же система может рассматриваться и как система с сосредоточенными параметрами и как система с распределенными параметрами. Например, нельзя указать точные границы для тока в проводе. Что касается классов моделей, то здесь имеется четкая граница. Системы с распределенными параметрами описываются с помощью дифференциальных уравнений в частных производных.
Если процесс развивается одновременно и во времени, и в пространстве (по одной координате l), то оператор А может преобразовывать входную векторную функцию X(t, l) в выходную векторную функцию Y(t, l) и зависеть от обоих аргументов: A=A(t,l).
Пример. Рассмотрим твердый брус, нагреваемый с одной стороны и изолированный с другой. Соотношение между температурой, временем и расстоянием от точки нагрева описывается дифференциальным уравнением в частных производных Температура в этом уравнении является функцией двух переменных: времени t и расстояния l, т.е. в любой момент времени ti температура изменяется с изменением расстояния li. или, наоборот, в любом месте li температура изменяется со временем.
- 1 Методологические основы моделирования сложных систем
- 1.1 Системность
- Понятия общей теории систем
- Определение понятия системы
- Основные свойства, обязательные для любой системы.
- Взаимодействие и взаимозависимость системы и внешней среды.
- Определение понятий элементов, связей, функций, внешней среды системы. Элемент
- Внешняя среда
- Функции системы
- Сложность систем
- Системный подход
- Классификация систем
- Развитие искусственной системы и ее жизненный цикл
- 1.2 Моделирование
- Общая методология моделирования
- Основные принципы моделирования:
- Процесс моделирования
- Анализ и синтез в моделировании
- Примеры сложных систем Космическая система наблюдения Земли как сложная техническая система Задачи космической системы наблюдения Земли
- Состав и структура космической системы наблюдения Земли
- 2 Построение математических моделей
- 2.1 Математическая модель, математическое моделирование – основные понятия, термины и определения
- Цели математического моделирования
- 2.2 Общие методы построения математической модели
- Микроподход и макроподход в исследованиях системы.
- Формальная запись модели системы
- Понятие вариационных принципов
- Модульное построение моделей
- 2.3 Требования к построению модели
- Адекватность и достоверность модели
- Равнозначимость внешнего и внутреннего правдоподобия
- Анализ чувствительности модели
- Пример анализа на чувствительность экономической задачи
- 3 Математические модели состояния и структуры системы
- 3.1 Модель состояния системы Состояние системы и ее функционирование
- Формализация процесса функционирования системы
- 3.2 Модель структуры системы Основные понятия структуры системы
- Модель состава и структуры системы
- Методология моделирования структуры системы
- Виды структур
- Формирование структуры модели с позиций структурного моделирования.
- Построение структурных моделей
- 3.3 Модель процесса функционирования
- Установление функциональных зависимостей
- Неопределенность функционирования системы
- Пути уменьшения неопределенностей
- Основные требования к модели процесса функционирования
- Анализ функционирования, анализ структуры технической системы
- Функционально – физический анализ технических объектов.
- Пример разработки моделей деятельности организации
- Пример функционально – физического анализа технических объектов
- Конструкция бытовой электроплитки
- Функционально стоимостной анализ.
- 4 Этапы построения моделей
- 4.1 Постановка задачи моделирования
- Разработка содержательной модели
- Разработка концептуальной модели
- Описание внешних воздействий
- Декомпозиция системы
- Подготовка исходных данных для математической модели
- Содержание концептуальной модели
- 4.2 Разработка математической модели
- Разработка функциональных соотношений
- Выбор метода решения задачи
- Проверка и корректировка модели
- Анализ чувствительности модели
- Проверка адекватности модели
- Контроль модели
- Корректировка модели
- Уточнение модели проектируемого объекта
- Реализация математической модели в виде программ для эвм
- 4.3 Практическое использование построенной модели и анализ результатов моделирования
- Примеры построения моделей Математическая реставрация Тунгусского феномена
- 1. Сбор информации о явлении, выдвижение гипотез.
- 2. Содержательная постановка задачи исследования явления.
- 3. Математическая постановка задачи.
- 4. Анализ результатов.
- 5. Проверка адекватности модели – сравнение с натурным экспериментом.
- 6. Анализ результатов.
- Прогноз климатических изменений
- 1. Содержательная постановка задачи
- 2. Концептуальная постановка. Построение математической модели.
- 3. Проведение вычислительного эксперимента.
- 4. Анализ результатов вычислительного эксперимента.
- 5 Виды математических моделей
- 5.1 Классификация математических моделей
- Пример представления модели различной сложности и классификации.
- 5.2 Классификация математических моделей в зависимости от оператора модели
- Линейные и нелинейные модели
- Обыкновенные дифференциальные модели
- 5.3 Классификация математических моделей в зависимости от параметров модели Непрерывные и дискретные модели
- Детерминированные и неопределенные модели
- Дискретно-детерминированная модель
- Статические и динамические модели
- Стационарные и нестационарные модели.
- Формализация системы в виде автомата
- Формализация системы в виде агрегата
- Моделирование процесса функционирования агрегата
- Моделирование агрегативных систем
- Модель сопряжения элементов
- 6 Математические модели распределения ресурсов в исследовании операций
- 6.1 Моделирование операций распределения ресурсов
- Формулировка задачи математического программирования
- 6.2 Модели линейного программирования
- Формулировка общей задачи линейного программирования.
- Типовые задачи линейного программирования
- Транспортная задача.
- Задача коммивояжера.
- Задача о ранце.
- Общая задача теории расписаний.
- Примеры сведения практических задач к канонической транспортной задаче
- 6.3 Распределительные задачи линейного программирования
- Примеры распределительных задач.
- Распределение транспортных единиц по линиям
- Выбор средств доставки грузов.
- Задача о назначениях
- Экономическая интерпретация задач линейного программирования.
- Перевозки взаимозаменяемых продуктов
- Перевозка неоднородного продукта на разнородном транспорте.
- 7 Математические модели физических явлений и процессов. Универсальность моделей
- 7.1 Математические модели на основе фундаментальных законов
- Теоретический метод составления математических моделей
- Основные фундаментальные законы механики
- Работа, энергия, мощность
- 7.2 Уравнения движения
- Динамика поступательного движения.
- 7.3 Уравнения состояния
- Термодинамическая система.
- Упругие свойства твердых тел.
- Жидкости.
- 7.4 Универсальность моделей
- Модели на основе аналогий
- Типовые математические модели элементов и подсистем
- Модель колебательного процесса
- Модель консервативной системы.
- Электрическая подсистема.
- Модели элементов гидравлических систем
- Модели элементов пневматических систем
- 8 Моделирование производственных процессов
- 8.1 Модели систем массового обслуживания
- Основные элементы систем массового обслуживания.
- Характеристики потока
- Классификация смо
- Оценка эффективности смо
- Аналитические и статистические модели
- 8.2 Модели производственных процессов
- Дискретный производственный процесс
- Непрерывный производственный процесс
- Агрегатное представление производственного процесса
- Имитационное моделирование процессов функционирования
- Формализация основных операций производственного процесса Формализованная схема дискретного производственного процесса.
- Формализация отклонения течения производственного процесса от нормального
- Моделирование комплексного процесса обработки, сборки и управления при поточном производстве
- Формализованная схема непрерывного производственного процесса.
- 9 Синтез модели (проекта) системы
- 9.1 Проектирование системы как процесс создания (синтеза) ее модели
- 9.2 Методология проектирования
- Типовые проектные процедуры формирования облика системы
- 9.3 Эффективность системы Понятие эффективности системы
- Формирование модели цели системы
- Выбор критериев и показателей эффективности
- Основные принципы выбора критериев эффективности:
- Проблемы многокритериальности
- 9.4 Технология проектирования
- 9.5 Принятие решений в проектировании
- Выбор в условиях неопределенности
- Моделирование принятия решения
- Прогнозирование в принятии решений
- 9.6 Анализ инвестиционной привлекательности системы Основные типы инвестиций.
- Основные экономические концепции инвестиционного анализа.
- Состав работ при инвестиционном проектировании
- Конкурентоспособность проектируемой системы Оценка потенциальной емкости рынка и потенциального объема продаж
- Оценка конкурентоспособности
- Методы оценки эффективности инвестиций
- Метод определения чистой текущей стоимости.
- Метод расчета рентабельности инвестиций
- Метод расчета внутренней нормы прибыли
- Расчет периода окупаемости инвестиций
- Маркетинг и управление проектом
- Задачи управления проектами
- 9.7 Особенности синтеза модели (проекта) технических систем Этапы проектирования
- Особенности проектирования адаптивных систем
- Моделирование функционирования технической системы Особенности построения моделей при проектировании
- Формирование технического облика системы
- Формирование структуры системы
- Выбор основных проектных параметров системы
- Формирование множества вариантов системы
- 10 Информационное обеспечение синтеза системы
- 10.1 Основные задачи и типы информационных систем Общие свойства информационных систем
- Файл-серверные информационные системы
- Клиент-серверные информационные системы
- Архитектура Интернет/Интранет
- Хранилища данных и системы оперативной аналитической обработки данных
- 10.2 Особенности проектирования информационных систем
- Схемы разработки проекта
- 1. Предпроектные исследования
- 2 Постановка задачи
- 3 Проектирование системы
- Архитектура программного обеспечения
- Подсистема администрирования.
- Техническая архитектура
- Организационное обеспечение системы
- 4 Реализация и внедрение системы
- 10.3 Концепции автоматизации проектирования
- История развития сапр
- Классификация сапр
- Стратегическое развитие сапр Современное состояние сапр
- Направления разработки проектной составляющей сапр
- Разновидности сапр
- Математическое и информационное обеспечение сапр
- 11 Моделирование процесса управления
- 11.1 Основные определения
- Формальная запись системы с управлением
- 11.2 Модели систем автоматического управления
- Устойчивость движения систем
- Определение программного движения и управление движением
- 11.3 Модели автоматизированных систем управления
- Модели автоматизированных систем управления производственными процессами
- Модели автоматизированных систем управления предприятием