logo
Мат мод консп сум-2012

5.2 Классификация математических моделей в зависимости от оператора модели

Любая математическая модель может рассматриваться как некоторый оператор – алгоритм или совокупность уравнений. Наиболее распространенный в математическом моделировании вид оператора – функция (элементы измеряются в числовых шкалах). В этом случае задается отношение на множестве элементов в виде числовой функции многих переменных f: RnR, где n - мерный вектор переменных системы x = (x1, x2,…,xn), характеризующий ее поведение, R- вещественная ось.

Конкретное задание функции связано с построением математической модели системы – на выбор функции накладываются ограничения, вытекающие из содержательной постановки задачи.

Построить функциональную зависимость, адекватно описывающую поведение сложной системы сложно, а чаще практически невозможно – устанавливаются функциональные зависимости между отдельными элементами системы. Но и в этом случае возникают сложности, связанные с недостатком информации о характере и механизмах взаимодействия между элементами системы (необходим итеративный подход). В этом случае оператор представляет систему уравнений.

Часто внутренними переменными системы являются не числа, а функции, тогда выходными параметрами могут выступать также функции или функционалы.

Классификационный признак при классификации в зависимости от оператора:

- «вид зависимости выходных параметров от значений входных параметров» - линейные или нелинейные модели;

- «вид функциональной зависимости» - алгебраические, дифференциальные (обыкновенные, в частных производных), интегродифференциальные и др. уравнения или системы уравнений.