Основные принципы моделирования:
1. Принцип информационной достаточности. Моделирование системы бессмысленно, если имеется исчерпывающая информация о ее функционировании. Принцип информационной достаточности предполагает наличие определенного порогового уровня априорных знаний о системе, когда существуют условия построения модели, адекватной исследуемой системе.
2. Принцип осуществимости - модель должна достигнуть цели исследования с отличной от нуля вероятностью за определенное (конечное) время.
3. Принцип множественности моделей. Использование полученной модели отражает только определённые (учтённые) стороны (характеристики) реального процесса. Поэтому для исчерпывающего исследования моделируемого процесса, возможно, потребуется построение набора моделей, которые бы позволили с разных сторон и с разной степенью детализации анализировать характеристики реального процесса.
4. Принцип агрегирования. Любая сложная система может быть представлена набором некоторых подсистем (агрегатов), а для их математического описания можно использовать определённые математические схемы. Этот принцип даёт возможность довольно легко перестраивать модель в зависимости от возникающих проблем и задач исследования.
5. Принцип параметризации. В структуру сложных (и больших) систем обычно включены достаточно изолированные компоненты (подсистемы). Если эти подсистемы характеризуются некоторым параметром, то представляется возможным заменить их в модели соответствующими числовыми значениями (или графиками, таблицами, формулами) и не описывать их функционирование.
Основные принципы моделирования положены в основу технологии моделирования.
Поскольку нет четких правил выделения системы из внешней среды (зачастую трудно сказать, где кончается система и начинается среда), система может иметь практически необозримое количество сущностей (свойств), создание модели всей системы нереально – не существует модели «вообще».
Таким образом, моделирование имеет целевой характер - модель отображает не вообще оригинал, а то, что необходимо для исследований системы.
Моделирование как метод исследования имеет следующую структуру: постановка задачи, создание модели, исследование модели, перенос знания с модели на оригинал.
Использование того или иного метода исследований определяется характером стоящих перед исследователем задач. Рассмотрение внутренних механизмов функционирования объекта, взаимосвязей и взаимодействий его с внешней средой обуславливает применение системного подхода. Представление объекта как системы позволяет широко использовать моделирование, которое предполагает установление определенных соответствий между элементами модели и моделируемого объекта и внешней среды.
Целевой характер моделирования
Модель, абсолютно эквивалентная действительности есть только идеализация. Создание такой модели невозможно, так как реальная действительность имеет бесконечную размерность.
В моделях достаточно потребовать не эквивалентности их оригиналам, а выделения из полного набора свойств тех свойств системы, которые интересуют исследователя системы (влияют на результаты решения задач исследований).
Общего решения проблемы определения, что такое существенная информация для решения поставленной задачи, не существует – этому посвящена вся методология моделирования.
Модель должна обеспечить возможность ответов на некоторую конкретную совокупность вопросов и исходя из этого давать полное, точное и адекватное описание конкретной системы.
Модель создается под поставленную проблему, а моделирование заключается в решениях задач: цели, построения модели, работы с моделью. Для правильно выбранной модели характерным является то, что она выявляет лишь те закономерности, которые нужны исследователю, и не рассматривает свойства системы, не существенные для данного исследования.
Между оригиналом и моделью должны быть сохранены некоторые соотношения подобия, вытекающие из закономерностей физической природы явлений. Это даст возможность путем моделирования оценивать свойства оригинала. Подбор этих соотношений (зависимостей, функций) определяется целями моделирования.
Для этого в модели должно быть точно установлено, что является и что не является субъектом моделирования (системой), описывать то, что входит в систему, и подразумевая то, что лежит за ее пределами и влияет на систему.
Отождествление модели системе проводится таким образом, что несущественные для решаемой задачи второстепенные детали опускаются, но сохраняются отношения между элементами системы, между системой и окружающей средой, влияющие на результаты исследования, для которых создается модель. Излишние подробности, не влияющие или слабо влияющие на результаты, могут заметно усложнить исследования и ухудшить точность решения.
Пример идеализации исходя из целей и задач.
Материальная точка не имеет размеров. Тогда что такое линия? Определение линии, плоскости: «Существует хотя бы одна прямая или одна плоскость. Каждая прямая и каждая плоскость есть несовпадающее с пространством непустое множество точек». Как не имеющие размеров точки могут заполнить линию? Вводится понятие предела и связанного с ним понятия бесконечно малой величины, непрерывности (основа дифференциального и интегрального исчисления).
Функция непрерывна на интервале, если она непрерывна во всех его точках, тогда ее график представляет собой непрерывную кривую.
Предел по ∆x: lim [f(x + ∆x) - f(x)] = 0.
Производная от функции y = f(x) в точке x есть скорость изменения ее в этой точке: lim ∆у/∆x = [f(x + ∆x) - f(x)] / ∆x = f′(x)
Траектория - линия, описываемая движущейся точкой. Состояние системы описывается точкой фазового пространства, которая тоже движется по некоторой траектории в этом пространстве. Состояние материальной точки не сводится к ее геометрическому положению, включает также и скорость.
- 1 Методологические основы моделирования сложных систем
- 1.1 Системность
- Понятия общей теории систем
- Определение понятия системы
- Основные свойства, обязательные для любой системы.
- Взаимодействие и взаимозависимость системы и внешней среды.
- Определение понятий элементов, связей, функций, внешней среды системы. Элемент
- Внешняя среда
- Функции системы
- Сложность систем
- Системный подход
- Классификация систем
- Развитие искусственной системы и ее жизненный цикл
- 1.2 Моделирование
- Общая методология моделирования
- Основные принципы моделирования:
- Процесс моделирования
- Анализ и синтез в моделировании
- Примеры сложных систем Космическая система наблюдения Земли как сложная техническая система Задачи космической системы наблюдения Земли
- Состав и структура космической системы наблюдения Земли
- 2 Построение математических моделей
- 2.1 Математическая модель, математическое моделирование – основные понятия, термины и определения
- Цели математического моделирования
- 2.2 Общие методы построения математической модели
- Микроподход и макроподход в исследованиях системы.
- Формальная запись модели системы
- Понятие вариационных принципов
- Модульное построение моделей
- 2.3 Требования к построению модели
- Адекватность и достоверность модели
- Равнозначимость внешнего и внутреннего правдоподобия
- Анализ чувствительности модели
- Пример анализа на чувствительность экономической задачи
- 3 Математические модели состояния и структуры системы
- 3.1 Модель состояния системы Состояние системы и ее функционирование
- Формализация процесса функционирования системы
- 3.2 Модель структуры системы Основные понятия структуры системы
- Модель состава и структуры системы
- Методология моделирования структуры системы
- Виды структур
- Формирование структуры модели с позиций структурного моделирования.
- Построение структурных моделей
- 3.3 Модель процесса функционирования
- Установление функциональных зависимостей
- Неопределенность функционирования системы
- Пути уменьшения неопределенностей
- Основные требования к модели процесса функционирования
- Анализ функционирования, анализ структуры технической системы
- Функционально – физический анализ технических объектов.
- Пример разработки моделей деятельности организации
- Пример функционально – физического анализа технических объектов
- Конструкция бытовой электроплитки
- Функционально стоимостной анализ.
- 4 Этапы построения моделей
- 4.1 Постановка задачи моделирования
- Разработка содержательной модели
- Разработка концептуальной модели
- Описание внешних воздействий
- Декомпозиция системы
- Подготовка исходных данных для математической модели
- Содержание концептуальной модели
- 4.2 Разработка математической модели
- Разработка функциональных соотношений
- Выбор метода решения задачи
- Проверка и корректировка модели
- Анализ чувствительности модели
- Проверка адекватности модели
- Контроль модели
- Корректировка модели
- Уточнение модели проектируемого объекта
- Реализация математической модели в виде программ для эвм
- 4.3 Практическое использование построенной модели и анализ результатов моделирования
- Примеры построения моделей Математическая реставрация Тунгусского феномена
- 1. Сбор информации о явлении, выдвижение гипотез.
- 2. Содержательная постановка задачи исследования явления.
- 3. Математическая постановка задачи.
- 4. Анализ результатов.
- 5. Проверка адекватности модели – сравнение с натурным экспериментом.
- 6. Анализ результатов.
- Прогноз климатических изменений
- 1. Содержательная постановка задачи
- 2. Концептуальная постановка. Построение математической модели.
- 3. Проведение вычислительного эксперимента.
- 4. Анализ результатов вычислительного эксперимента.
- 5 Виды математических моделей
- 5.1 Классификация математических моделей
- Пример представления модели различной сложности и классификации.
- 5.2 Классификация математических моделей в зависимости от оператора модели
- Линейные и нелинейные модели
- Обыкновенные дифференциальные модели
- 5.3 Классификация математических моделей в зависимости от параметров модели Непрерывные и дискретные модели
- Детерминированные и неопределенные модели
- Дискретно-детерминированная модель
- Статические и динамические модели
- Стационарные и нестационарные модели.
- Формализация системы в виде автомата
- Формализация системы в виде агрегата
- Моделирование процесса функционирования агрегата
- Моделирование агрегативных систем
- Модель сопряжения элементов
- 6 Математические модели распределения ресурсов в исследовании операций
- 6.1 Моделирование операций распределения ресурсов
- Формулировка задачи математического программирования
- 6.2 Модели линейного программирования
- Формулировка общей задачи линейного программирования.
- Типовые задачи линейного программирования
- Транспортная задача.
- Задача коммивояжера.
- Задача о ранце.
- Общая задача теории расписаний.
- Примеры сведения практических задач к канонической транспортной задаче
- 6.3 Распределительные задачи линейного программирования
- Примеры распределительных задач.
- Распределение транспортных единиц по линиям
- Выбор средств доставки грузов.
- Задача о назначениях
- Экономическая интерпретация задач линейного программирования.
- Перевозки взаимозаменяемых продуктов
- Перевозка неоднородного продукта на разнородном транспорте.
- 7 Математические модели физических явлений и процессов. Универсальность моделей
- 7.1 Математические модели на основе фундаментальных законов
- Теоретический метод составления математических моделей
- Основные фундаментальные законы механики
- Работа, энергия, мощность
- 7.2 Уравнения движения
- Динамика поступательного движения.
- 7.3 Уравнения состояния
- Термодинамическая система.
- Упругие свойства твердых тел.
- Жидкости.
- 7.4 Универсальность моделей
- Модели на основе аналогий
- Типовые математические модели элементов и подсистем
- Модель колебательного процесса
- Модель консервативной системы.
- Электрическая подсистема.
- Модели элементов гидравлических систем
- Модели элементов пневматических систем
- 8 Моделирование производственных процессов
- 8.1 Модели систем массового обслуживания
- Основные элементы систем массового обслуживания.
- Характеристики потока
- Классификация смо
- Оценка эффективности смо
- Аналитические и статистические модели
- 8.2 Модели производственных процессов
- Дискретный производственный процесс
- Непрерывный производственный процесс
- Агрегатное представление производственного процесса
- Имитационное моделирование процессов функционирования
- Формализация основных операций производственного процесса Формализованная схема дискретного производственного процесса.
- Формализация отклонения течения производственного процесса от нормального
- Моделирование комплексного процесса обработки, сборки и управления при поточном производстве
- Формализованная схема непрерывного производственного процесса.
- 9 Синтез модели (проекта) системы
- 9.1 Проектирование системы как процесс создания (синтеза) ее модели
- 9.2 Методология проектирования
- Типовые проектные процедуры формирования облика системы
- 9.3 Эффективность системы Понятие эффективности системы
- Формирование модели цели системы
- Выбор критериев и показателей эффективности
- Основные принципы выбора критериев эффективности:
- Проблемы многокритериальности
- 9.4 Технология проектирования
- 9.5 Принятие решений в проектировании
- Выбор в условиях неопределенности
- Моделирование принятия решения
- Прогнозирование в принятии решений
- 9.6 Анализ инвестиционной привлекательности системы Основные типы инвестиций.
- Основные экономические концепции инвестиционного анализа.
- Состав работ при инвестиционном проектировании
- Конкурентоспособность проектируемой системы Оценка потенциальной емкости рынка и потенциального объема продаж
- Оценка конкурентоспособности
- Методы оценки эффективности инвестиций
- Метод определения чистой текущей стоимости.
- Метод расчета рентабельности инвестиций
- Метод расчета внутренней нормы прибыли
- Расчет периода окупаемости инвестиций
- Маркетинг и управление проектом
- Задачи управления проектами
- 9.7 Особенности синтеза модели (проекта) технических систем Этапы проектирования
- Особенности проектирования адаптивных систем
- Моделирование функционирования технической системы Особенности построения моделей при проектировании
- Формирование технического облика системы
- Формирование структуры системы
- Выбор основных проектных параметров системы
- Формирование множества вариантов системы
- 10 Информационное обеспечение синтеза системы
- 10.1 Основные задачи и типы информационных систем Общие свойства информационных систем
- Файл-серверные информационные системы
- Клиент-серверные информационные системы
- Архитектура Интернет/Интранет
- Хранилища данных и системы оперативной аналитической обработки данных
- 10.2 Особенности проектирования информационных систем
- Схемы разработки проекта
- 1. Предпроектные исследования
- 2 Постановка задачи
- 3 Проектирование системы
- Архитектура программного обеспечения
- Подсистема администрирования.
- Техническая архитектура
- Организационное обеспечение системы
- 4 Реализация и внедрение системы
- 10.3 Концепции автоматизации проектирования
- История развития сапр
- Классификация сапр
- Стратегическое развитие сапр Современное состояние сапр
- Направления разработки проектной составляющей сапр
- Разновидности сапр
- Математическое и информационное обеспечение сапр
- 11 Моделирование процесса управления
- 11.1 Основные определения
- Формальная запись системы с управлением
- 11.2 Модели систем автоматического управления
- Устойчивость движения систем
- Определение программного движения и управление движением
- 11.3 Модели автоматизированных систем управления
- Модели автоматизированных систем управления производственными процессами
- Модели автоматизированных систем управления предприятием