Адекватность и достоверность модели
Модель адекватна (adaequatus – приравненный) объекту, если результаты моделирования удовлетворяют исследователя по заданной степени точности и могут служить основой для прогнозирования поведения или свойств исследуемого объекта. Адекватность модели зависит от целей моделирования и принятых критериев оценки выполнения целей.
Предпочтительна та модель, которая, позволяя достичь желаемых результатов, является более простой. При этом адекватность и простота не являются противоречивыми требованиями.
Для объекта любой сложности, можно предположить существование множества его моделей, различающихся по степени полноты, адекватности и простоты. Учитывая заложенную при создании неполноту модели, можно утверждать, что идеально адекватная модель принципиально невозможна.
Адекватность - качественное и количественное совпадение именно тех характеристик модели с объектом, которые важны в данном конкретном случае, и в той мере, в которой это достаточно для достижения цели исследования (степень соответствия действительности предсказаний, сделанных на основе модели исходя из целей моделирования).
Оценка адекватности математической модели – определяется степень соответствия результатов, полученных по разработанной модели, данным эксперимента или тестовой задачи.
Модель, адекватная при анализе одних характеристик, может быть неадекватна при анализе других.
Вопрос, что является для данной модели существенным, а что нет, решается неформально на основе качественного анализа и с помощью количественных вычислений при проверке модели.
Требование реализуемости модели заставляет сокращать число учитываемых факторов за счет их ранжирования по степени влияния на адекватность модели, что осуществляется при решении каждой конкретной задачи на каждом уровне.
Забвение того, что всякая адекватность математической модели реальному объекту лишь относительна и имеет свои рамки применимости, может привести к грубым ошибкам, основанным на бесконтрольном приписывании реальному объекту свойств его модели.
В сложных случаях мы можем говорить об адекватности лишь с некоторой долей уверенности. Эта уверенность повышается, если следствия из принятой модели хорошо согласуются с надежно установленными фактами или физическим экспериментом.
Довольно часто бывает, что модель, построенная для изучения некоторых свойств объекта, адекватность которой установлена по отношению к этим свойствам, оказывается адекватной и по отношению к каким-то другим свойствам.
Говоря о математической модели и ее адекватности, часто не упоминают о том, какие именно свойства объекта моделируются. При этом нельзя забывать о принципиальной ограниченности области возможного применения любой математической модели.
Качественная адекватность модели (адекватность функционального описания) - соответствие характера реакции системы и модели на изменения входных параметров. Качественная адекватность предполагает оценку совпадения с экспериментальными данными вида функции (убывающая или возрастающая, с одним или несколькими экстремумами).
Понятию качественной адекватности близко понятие достоверности.
Понятию качественной адекватности близко понятие достоверности. Достоверность (полнота) модели: отражение в достаточной мере именно тех характеристик и особенностей моделируемого объекта, которые соответствуют поставленной цели исследования.
Еще одна неформальная, загадочная форма подтверждения достоверности – красота - уверенность, что красиво, то достоверно (красота формы самолета).
Каждая модель содержит условия своей истинности явно, например, в форме допущений и предположений, или неявно, что можно обнаружить, испытывая модель.
Для оценки достоверности необходимо выявить: что известно точно (достоверно), что – с оцениваемой степенью неопределенности (например, с известной вероятностью для стохастических моделей), что можно считать достоверным только при выполнении определенных условий, что известно о том, что неизвестно.
С одной стороны, при создании модели необходимо обеспечить способность модели отображать свойства системы истинно, полно и точно, с другой стороны – обеспечить простоту, умеренную сложность модели для ее приемлемой реализуемости. Эти противоречивые требования решаются неформально - в зависимости от поставленной задачи.
Требование достоверности вынуждает строить модель как можно более полную, точную – учитывать больше факторов на каждом уровне, увеличивать количество уровней иерархии.
С понятием достоверности связано прежде всего понятие упрощенности моделей – приближенностью отображения действительности – различия неизбежны – модель это другой объект (единственной совершенно точной картой местности является сама местность). Различие само по себе не может быть ни большим, ни малым: само по себе оно либо есть, либо его нет. Величину, меру, степень приемлемости различия можно ввести только соотнося его с целью моделирования. Пример: различная точность часов для различных целей.
Количественная адекватность модели - соответствие количественных характеристик тем частным случаям, для которых уже имеются фактические данные или апробированные на практике модели – соответствие выходов модели и объекта при одинаковых условиях с заданной точностью. Количественная адекватность модели (мера адекватности) оценивается в зависимости от заданной точности решения задачи (определяется целью исследований) - осуществляется оценка принятых гипотез и допущений для различных начальных условий. Модель считается адекватной, если она отражает заданные свойства объекта с приемлемой точностью (с относительной погрешностью не более некоторого заданного значения).
Понятия достоверности и адекватности являются условными, поскольку мы не можем рассчитывать на полное соответствие модели реальному объекту, иначе это был бы сам объект, а не модель. Поэтому в процессе моделирования следует учитывать адекватность не модели вообще, а именно тех ее свойств, которые являются существенными с точки зрения проводимого исследования. В процессе проверки модели необходимо установить включение в модель всех существенных факторов. Сложность решения этой проблемы зависит от сложности решаемой задачи.
Адекватность модели может не удовлетворять исследователя по многим причинам: из-за идеализации внешних условий и режимов функционирования; исключения тех или иных параметров; пренебрежения некоторыми случайными факторами. Отсутствие точных сведений о внешних воздействиях, определенных нюансах структуры системы, принятые аппроксимации, интерполяции, предположения и гипотезы также ведут к уменьшению соответствия между моделью и системой. Это приводит к тому, что результаты моделирования будут существенно отличаться от реальных.
Простейшей мерой адекватности может служить отклонение некоторой характеристики оригинала и модели,
или
Тогда можно считать, что модель адекватна с системой, если вероятность того, что отклонение не превышает предельной величины , больше допустимой вероятности :
Практическое использование данного критерия адекватности зачастую невозможно по следующим причинам:
- для проектируемых или модернизируемых систем отсутствует информация о значении характеристики ;
- система оценивается не по одной, а по множеству характеристик, у котолрых может быть разная величина отклонения;
- характеристики могут быть случайными величинами и функциями, а часто и нестационарными;
- отсутствует возможность априорного точного задания предельных отклонений и допустимых вероятностей .
Понятие адекватности включает в себя понятия устойчивости и точности модели.
Устойчивость математической модели - изменение в определенных пределах параметров модели не вызывает качественного изменения ее свойств.
Точность математической модели — ее свойство, отражающее степень совпадения предсказанных с ее помощью значений параметров объекта с истинными значениями этих параметров. Точность модели тесно связана с понятием количественной адекватности.
Истинные значения параметров объекта обычно отождествляют с экспериментами полученными на модели (в том числе в результате вычислительного эксперимента). Однако погрешности эксперимента во многих случаях оказываются соизмеримыми с погрешностями математической модели а иногда и заметно их превышают.
Пусть объект характеризуется n выходными параметрами У = (У1 , У2 , …Уi ,…Уn ). Пусть Уiм и Уiр - найденное при помощи матмодели и реальное значения i-го выходного параметра. Точность оценивается относительной погрешностью ε = Уi м - Уi р / Уi р , i = 1, n.
Уточнение модели состоит в том, что в базовый (грубый) вариант модели, добавляются детали, пока модель не достигнет желаемого качества (необходимой точности).
Универсальность – полнота отображения свойств реального объекта, возможность использования модели для группы однотипных объектов и режимов их функционирования.
Увеличение универсальности (расширение группы объектов, для которых может использоваться модель) значительно усложняют модель.
Требования адекватности, экономичности, универсальности противоречат друг другу. Поскольку качество любого объекта проявляется во множестве взаимосвязанных между собой свойств, адекватная модель должна отображать как можно больше свойств.
Стремление во всех случаях обеспечить максимальное внешнее правдоподобие может привести к существенным упрощениям, необходимым для реализации модели. И, наоборот, могут быть разработаны модели, в которых при небольшом внешнем правдоподобии используются весьма точные математические методы.
- 1 Методологические основы моделирования сложных систем
- 1.1 Системность
- Понятия общей теории систем
- Определение понятия системы
- Основные свойства, обязательные для любой системы.
- Взаимодействие и взаимозависимость системы и внешней среды.
- Определение понятий элементов, связей, функций, внешней среды системы. Элемент
- Внешняя среда
- Функции системы
- Сложность систем
- Системный подход
- Классификация систем
- Развитие искусственной системы и ее жизненный цикл
- 1.2 Моделирование
- Общая методология моделирования
- Основные принципы моделирования:
- Процесс моделирования
- Анализ и синтез в моделировании
- Примеры сложных систем Космическая система наблюдения Земли как сложная техническая система Задачи космической системы наблюдения Земли
- Состав и структура космической системы наблюдения Земли
- 2 Построение математических моделей
- 2.1 Математическая модель, математическое моделирование – основные понятия, термины и определения
- Цели математического моделирования
- 2.2 Общие методы построения математической модели
- Микроподход и макроподход в исследованиях системы.
- Формальная запись модели системы
- Понятие вариационных принципов
- Модульное построение моделей
- 2.3 Требования к построению модели
- Адекватность и достоверность модели
- Равнозначимость внешнего и внутреннего правдоподобия
- Анализ чувствительности модели
- Пример анализа на чувствительность экономической задачи
- 3 Математические модели состояния и структуры системы
- 3.1 Модель состояния системы Состояние системы и ее функционирование
- Формализация процесса функционирования системы
- 3.2 Модель структуры системы Основные понятия структуры системы
- Модель состава и структуры системы
- Методология моделирования структуры системы
- Виды структур
- Формирование структуры модели с позиций структурного моделирования.
- Построение структурных моделей
- 3.3 Модель процесса функционирования
- Установление функциональных зависимостей
- Неопределенность функционирования системы
- Пути уменьшения неопределенностей
- Основные требования к модели процесса функционирования
- Анализ функционирования, анализ структуры технической системы
- Функционально – физический анализ технических объектов.
- Пример разработки моделей деятельности организации
- Пример функционально – физического анализа технических объектов
- Конструкция бытовой электроплитки
- Функционально стоимостной анализ.
- 4 Этапы построения моделей
- 4.1 Постановка задачи моделирования
- Разработка содержательной модели
- Разработка концептуальной модели
- Описание внешних воздействий
- Декомпозиция системы
- Подготовка исходных данных для математической модели
- Содержание концептуальной модели
- 4.2 Разработка математической модели
- Разработка функциональных соотношений
- Выбор метода решения задачи
- Проверка и корректировка модели
- Анализ чувствительности модели
- Проверка адекватности модели
- Контроль модели
- Корректировка модели
- Уточнение модели проектируемого объекта
- Реализация математической модели в виде программ для эвм
- 4.3 Практическое использование построенной модели и анализ результатов моделирования
- Примеры построения моделей Математическая реставрация Тунгусского феномена
- 1. Сбор информации о явлении, выдвижение гипотез.
- 2. Содержательная постановка задачи исследования явления.
- 3. Математическая постановка задачи.
- 4. Анализ результатов.
- 5. Проверка адекватности модели – сравнение с натурным экспериментом.
- 6. Анализ результатов.
- Прогноз климатических изменений
- 1. Содержательная постановка задачи
- 2. Концептуальная постановка. Построение математической модели.
- 3. Проведение вычислительного эксперимента.
- 4. Анализ результатов вычислительного эксперимента.
- 5 Виды математических моделей
- 5.1 Классификация математических моделей
- Пример представления модели различной сложности и классификации.
- 5.2 Классификация математических моделей в зависимости от оператора модели
- Линейные и нелинейные модели
- Обыкновенные дифференциальные модели
- 5.3 Классификация математических моделей в зависимости от параметров модели Непрерывные и дискретные модели
- Детерминированные и неопределенные модели
- Дискретно-детерминированная модель
- Статические и динамические модели
- Стационарные и нестационарные модели.
- Формализация системы в виде автомата
- Формализация системы в виде агрегата
- Моделирование процесса функционирования агрегата
- Моделирование агрегативных систем
- Модель сопряжения элементов
- 6 Математические модели распределения ресурсов в исследовании операций
- 6.1 Моделирование операций распределения ресурсов
- Формулировка задачи математического программирования
- 6.2 Модели линейного программирования
- Формулировка общей задачи линейного программирования.
- Типовые задачи линейного программирования
- Транспортная задача.
- Задача коммивояжера.
- Задача о ранце.
- Общая задача теории расписаний.
- Примеры сведения практических задач к канонической транспортной задаче
- 6.3 Распределительные задачи линейного программирования
- Примеры распределительных задач.
- Распределение транспортных единиц по линиям
- Выбор средств доставки грузов.
- Задача о назначениях
- Экономическая интерпретация задач линейного программирования.
- Перевозки взаимозаменяемых продуктов
- Перевозка неоднородного продукта на разнородном транспорте.
- 7 Математические модели физических явлений и процессов. Универсальность моделей
- 7.1 Математические модели на основе фундаментальных законов
- Теоретический метод составления математических моделей
- Основные фундаментальные законы механики
- Работа, энергия, мощность
- 7.2 Уравнения движения
- Динамика поступательного движения.
- 7.3 Уравнения состояния
- Термодинамическая система.
- Упругие свойства твердых тел.
- Жидкости.
- 7.4 Универсальность моделей
- Модели на основе аналогий
- Типовые математические модели элементов и подсистем
- Модель колебательного процесса
- Модель консервативной системы.
- Электрическая подсистема.
- Модели элементов гидравлических систем
- Модели элементов пневматических систем
- 8 Моделирование производственных процессов
- 8.1 Модели систем массового обслуживания
- Основные элементы систем массового обслуживания.
- Характеристики потока
- Классификация смо
- Оценка эффективности смо
- Аналитические и статистические модели
- 8.2 Модели производственных процессов
- Дискретный производственный процесс
- Непрерывный производственный процесс
- Агрегатное представление производственного процесса
- Имитационное моделирование процессов функционирования
- Формализация основных операций производственного процесса Формализованная схема дискретного производственного процесса.
- Формализация отклонения течения производственного процесса от нормального
- Моделирование комплексного процесса обработки, сборки и управления при поточном производстве
- Формализованная схема непрерывного производственного процесса.
- 9 Синтез модели (проекта) системы
- 9.1 Проектирование системы как процесс создания (синтеза) ее модели
- 9.2 Методология проектирования
- Типовые проектные процедуры формирования облика системы
- 9.3 Эффективность системы Понятие эффективности системы
- Формирование модели цели системы
- Выбор критериев и показателей эффективности
- Основные принципы выбора критериев эффективности:
- Проблемы многокритериальности
- 9.4 Технология проектирования
- 9.5 Принятие решений в проектировании
- Выбор в условиях неопределенности
- Моделирование принятия решения
- Прогнозирование в принятии решений
- 9.6 Анализ инвестиционной привлекательности системы Основные типы инвестиций.
- Основные экономические концепции инвестиционного анализа.
- Состав работ при инвестиционном проектировании
- Конкурентоспособность проектируемой системы Оценка потенциальной емкости рынка и потенциального объема продаж
- Оценка конкурентоспособности
- Методы оценки эффективности инвестиций
- Метод определения чистой текущей стоимости.
- Метод расчета рентабельности инвестиций
- Метод расчета внутренней нормы прибыли
- Расчет периода окупаемости инвестиций
- Маркетинг и управление проектом
- Задачи управления проектами
- 9.7 Особенности синтеза модели (проекта) технических систем Этапы проектирования
- Особенности проектирования адаптивных систем
- Моделирование функционирования технической системы Особенности построения моделей при проектировании
- Формирование технического облика системы
- Формирование структуры системы
- Выбор основных проектных параметров системы
- Формирование множества вариантов системы
- 10 Информационное обеспечение синтеза системы
- 10.1 Основные задачи и типы информационных систем Общие свойства информационных систем
- Файл-серверные информационные системы
- Клиент-серверные информационные системы
- Архитектура Интернет/Интранет
- Хранилища данных и системы оперативной аналитической обработки данных
- 10.2 Особенности проектирования информационных систем
- Схемы разработки проекта
- 1. Предпроектные исследования
- 2 Постановка задачи
- 3 Проектирование системы
- Архитектура программного обеспечения
- Подсистема администрирования.
- Техническая архитектура
- Организационное обеспечение системы
- 4 Реализация и внедрение системы
- 10.3 Концепции автоматизации проектирования
- История развития сапр
- Классификация сапр
- Стратегическое развитие сапр Современное состояние сапр
- Направления разработки проектной составляющей сапр
- Разновидности сапр
- Математическое и информационное обеспечение сапр
- 11 Моделирование процесса управления
- 11.1 Основные определения
- Формальная запись системы с управлением
- 11.2 Модели систем автоматического управления
- Устойчивость движения систем
- Определение программного движения и управление движением
- 11.3 Модели автоматизированных систем управления
- Модели автоматизированных систем управления производственными процессами
- Модели автоматизированных систем управления предприятием