Математическое и информационное обеспечение сапр
Математическое и информационное обеспечение САПР определяется целями и задачами соответствующего этапа проектирования. Оно наиболее развито для САПР начального этапа проектирования (внешнего проектирования) – остальные виды обеспечений формируются для их эффективной работы.
Структура САПР внешнего проектирования должна включать следующие элементы математического и информационного обеспечения:
- библиотеку моделей объекта и процесса проектирования;
- библиотеку процедур проектных решений в соответствии с задаваемой логической схемой проектирования;
- систему обеспечения информацией в виде баз данных и СУБД.
Основные инвариантные составляющие методического обеспечения САПР для решения задач внешнего проектирования: типовые математические модели и средства построения математических моделей объекта, методы проектирования и логическая схема проектирования.
Методическое обеспечение САПР (математические модели, логическая схема проектирования, проектные процедуры и операции) и соответствующее им программное обеспечение целиком не может быть инвариантным, но разрабатываться оно должно так, чтобы любой его элемент мог быть принят в качестве инвариантного компонента во вновь разрабатываемой подсистеме САПР. Отсюда основное требование – модульность разработки отдельных компонент подсистем САПР.
Математические модели как всей проектируемой системы, так и ее элементов, разрабатываются в виде нескольких взаимосвязанных и информационно совместимых уровней: быстрые алгоритмы – для оптимизационных задач, буферные алгоритмы – для сравнительного анализа альтернативных вариантов и уточнения решения оптимизационных задач, поверочные расчеты - для расчета основных характеристик опорных вариантов и окончательных вариантов, которые передаются для дальнейшего проектирования.
Методы проектирования. Метод – стандартные и однозначные правила действий. Методы автоматизированного проектирования – правила действий проектанта, направленные на решение проектной задачи с использованием САПР.
Исходя из такой формулировки, условно методы автоматизированного проектирования можно разделить на методы построения процесса проектирования, методы представления объекта проектирования, методы решения проектных задач.
Методы построения процесса проектирования реализуют заданную логическую схему и соответствующую ей технологию проектирования.
Методы представления объекта проектирования – описание и формализованное представление объекта и его свойств (модели).
Методы решения проектных задач – неформализованные (поиск альтернатив, конструирование, оценка научно-технической информации, принятия решений), формализованные (поиск научно-технической информации и данных).
Неформализованные методы – методы, направленные на интенсификацию творческого процесса и методы системных исследований.
Методы интенсификации творческого процесса - это методы мозгового штурма (свободное генерирование группой проектантов большого количества разнообразных идей без их критики), инверсии (получение новой точки зрения путем отказа от прежних взглядов, нетривиального подхода), аналогии (стимулирование новых идей аналогичными ситуациями в других задачах), фантазии (использование для конкретных решений фантастических решений и процессов). Это требует большой предварительной подготовки с использованием базы данных альтернативных решений.
Методы системных исследований – это методы структуризация идей (диаграммы и матрицы идей).
Формализованные методы решения проектных задач являются составной частью проектных процедур и имеют четкую предметную и объектную направленность.
В обобщенном виде проектная процедура характеризуется входом (списки исходных данных), выходом (списки выходной информации), множеством моделей объекта проектирования и методов решения проектной задачи (проектных расчетов). Все эти списки находятся в базе данных.
Поверочные методы проектных расчетов - выходные данные определяются непосредственными прямыми вычислениями по заданному входу и известной модели.
Оптимизационные методы - обеспечение поиска оптимальных значений критериев эффективности.
Оптимизационные методы делятся по типу связей в математической модели (аналитические связи и дифференциальные или смешанные).
При аналитических связях (уравнения связи являются аналитическими выражениями) - в зависимости от типа связи: линейного, нелинейного, стохастического, динамического программирования – многошаговые процессы поиска оптимального решения, случайного поиска.
В случае дифференциальных или смешанных уравнений связи: вариационные методы (условие функционирования объекта – в виде дифференциальных уравнений движения), дифференциальные игры (преследование одного управляемого объекта другим управляемым объектом при некоторой свободе действий этих объектов), случайный поиск.
Информационное обеспечение САПР
Назначение информационного обеспечения – обеспечение процесса проектирования необходимыми базами данных и средствами работы с ними. В базах данных хранятся методы, модели, процедуры проектирования (типовые и вновь создаваемые), информация в виде численных данных, текста, рисунков, графиков, словари справочники, законодательные и нормативные документы. Структура и объем информационного обеспечения определяется структурой и объемом необходимых данных.
Основополагающее условие постоянной работы с информационным обеспечением - доступность и достоверность, т. е. возможность быстро и в нужный момент получить необходимую информацию.
- 1 Методологические основы моделирования сложных систем
- 1.1 Системность
- Понятия общей теории систем
- Определение понятия системы
- Основные свойства, обязательные для любой системы.
- Взаимодействие и взаимозависимость системы и внешней среды.
- Определение понятий элементов, связей, функций, внешней среды системы. Элемент
- Внешняя среда
- Функции системы
- Сложность систем
- Системный подход
- Классификация систем
- Развитие искусственной системы и ее жизненный цикл
- 1.2 Моделирование
- Общая методология моделирования
- Основные принципы моделирования:
- Процесс моделирования
- Анализ и синтез в моделировании
- Примеры сложных систем Космическая система наблюдения Земли как сложная техническая система Задачи космической системы наблюдения Земли
- Состав и структура космической системы наблюдения Земли
- 2 Построение математических моделей
- 2.1 Математическая модель, математическое моделирование – основные понятия, термины и определения
- Цели математического моделирования
- 2.2 Общие методы построения математической модели
- Микроподход и макроподход в исследованиях системы.
- Формальная запись модели системы
- Понятие вариационных принципов
- Модульное построение моделей
- 2.3 Требования к построению модели
- Адекватность и достоверность модели
- Равнозначимость внешнего и внутреннего правдоподобия
- Анализ чувствительности модели
- Пример анализа на чувствительность экономической задачи
- 3 Математические модели состояния и структуры системы
- 3.1 Модель состояния системы Состояние системы и ее функционирование
- Формализация процесса функционирования системы
- 3.2 Модель структуры системы Основные понятия структуры системы
- Модель состава и структуры системы
- Методология моделирования структуры системы
- Виды структур
- Формирование структуры модели с позиций структурного моделирования.
- Построение структурных моделей
- 3.3 Модель процесса функционирования
- Установление функциональных зависимостей
- Неопределенность функционирования системы
- Пути уменьшения неопределенностей
- Основные требования к модели процесса функционирования
- Анализ функционирования, анализ структуры технической системы
- Функционально – физический анализ технических объектов.
- Пример разработки моделей деятельности организации
- Пример функционально – физического анализа технических объектов
- Конструкция бытовой электроплитки
- Функционально стоимостной анализ.
- 4 Этапы построения моделей
- 4.1 Постановка задачи моделирования
- Разработка содержательной модели
- Разработка концептуальной модели
- Описание внешних воздействий
- Декомпозиция системы
- Подготовка исходных данных для математической модели
- Содержание концептуальной модели
- 4.2 Разработка математической модели
- Разработка функциональных соотношений
- Выбор метода решения задачи
- Проверка и корректировка модели
- Анализ чувствительности модели
- Проверка адекватности модели
- Контроль модели
- Корректировка модели
- Уточнение модели проектируемого объекта
- Реализация математической модели в виде программ для эвм
- 4.3 Практическое использование построенной модели и анализ результатов моделирования
- Примеры построения моделей Математическая реставрация Тунгусского феномена
- 1. Сбор информации о явлении, выдвижение гипотез.
- 2. Содержательная постановка задачи исследования явления.
- 3. Математическая постановка задачи.
- 4. Анализ результатов.
- 5. Проверка адекватности модели – сравнение с натурным экспериментом.
- 6. Анализ результатов.
- Прогноз климатических изменений
- 1. Содержательная постановка задачи
- 2. Концептуальная постановка. Построение математической модели.
- 3. Проведение вычислительного эксперимента.
- 4. Анализ результатов вычислительного эксперимента.
- 5 Виды математических моделей
- 5.1 Классификация математических моделей
- Пример представления модели различной сложности и классификации.
- 5.2 Классификация математических моделей в зависимости от оператора модели
- Линейные и нелинейные модели
- Обыкновенные дифференциальные модели
- 5.3 Классификация математических моделей в зависимости от параметров модели Непрерывные и дискретные модели
- Детерминированные и неопределенные модели
- Дискретно-детерминированная модель
- Статические и динамические модели
- Стационарные и нестационарные модели.
- Формализация системы в виде автомата
- Формализация системы в виде агрегата
- Моделирование процесса функционирования агрегата
- Моделирование агрегативных систем
- Модель сопряжения элементов
- 6 Математические модели распределения ресурсов в исследовании операций
- 6.1 Моделирование операций распределения ресурсов
- Формулировка задачи математического программирования
- 6.2 Модели линейного программирования
- Формулировка общей задачи линейного программирования.
- Типовые задачи линейного программирования
- Транспортная задача.
- Задача коммивояжера.
- Задача о ранце.
- Общая задача теории расписаний.
- Примеры сведения практических задач к канонической транспортной задаче
- 6.3 Распределительные задачи линейного программирования
- Примеры распределительных задач.
- Распределение транспортных единиц по линиям
- Выбор средств доставки грузов.
- Задача о назначениях
- Экономическая интерпретация задач линейного программирования.
- Перевозки взаимозаменяемых продуктов
- Перевозка неоднородного продукта на разнородном транспорте.
- 7 Математические модели физических явлений и процессов. Универсальность моделей
- 7.1 Математические модели на основе фундаментальных законов
- Теоретический метод составления математических моделей
- Основные фундаментальные законы механики
- Работа, энергия, мощность
- 7.2 Уравнения движения
- Динамика поступательного движения.
- 7.3 Уравнения состояния
- Термодинамическая система.
- Упругие свойства твердых тел.
- Жидкости.
- 7.4 Универсальность моделей
- Модели на основе аналогий
- Типовые математические модели элементов и подсистем
- Модель колебательного процесса
- Модель консервативной системы.
- Электрическая подсистема.
- Модели элементов гидравлических систем
- Модели элементов пневматических систем
- 8 Моделирование производственных процессов
- 8.1 Модели систем массового обслуживания
- Основные элементы систем массового обслуживания.
- Характеристики потока
- Классификация смо
- Оценка эффективности смо
- Аналитические и статистические модели
- 8.2 Модели производственных процессов
- Дискретный производственный процесс
- Непрерывный производственный процесс
- Агрегатное представление производственного процесса
- Имитационное моделирование процессов функционирования
- Формализация основных операций производственного процесса Формализованная схема дискретного производственного процесса.
- Формализация отклонения течения производственного процесса от нормального
- Моделирование комплексного процесса обработки, сборки и управления при поточном производстве
- Формализованная схема непрерывного производственного процесса.
- 9 Синтез модели (проекта) системы
- 9.1 Проектирование системы как процесс создания (синтеза) ее модели
- 9.2 Методология проектирования
- Типовые проектные процедуры формирования облика системы
- 9.3 Эффективность системы Понятие эффективности системы
- Формирование модели цели системы
- Выбор критериев и показателей эффективности
- Основные принципы выбора критериев эффективности:
- Проблемы многокритериальности
- 9.4 Технология проектирования
- 9.5 Принятие решений в проектировании
- Выбор в условиях неопределенности
- Моделирование принятия решения
- Прогнозирование в принятии решений
- 9.6 Анализ инвестиционной привлекательности системы Основные типы инвестиций.
- Основные экономические концепции инвестиционного анализа.
- Состав работ при инвестиционном проектировании
- Конкурентоспособность проектируемой системы Оценка потенциальной емкости рынка и потенциального объема продаж
- Оценка конкурентоспособности
- Методы оценки эффективности инвестиций
- Метод определения чистой текущей стоимости.
- Метод расчета рентабельности инвестиций
- Метод расчета внутренней нормы прибыли
- Расчет периода окупаемости инвестиций
- Маркетинг и управление проектом
- Задачи управления проектами
- 9.7 Особенности синтеза модели (проекта) технических систем Этапы проектирования
- Особенности проектирования адаптивных систем
- Моделирование функционирования технической системы Особенности построения моделей при проектировании
- Формирование технического облика системы
- Формирование структуры системы
- Выбор основных проектных параметров системы
- Формирование множества вариантов системы
- 10 Информационное обеспечение синтеза системы
- 10.1 Основные задачи и типы информационных систем Общие свойства информационных систем
- Файл-серверные информационные системы
- Клиент-серверные информационные системы
- Архитектура Интернет/Интранет
- Хранилища данных и системы оперативной аналитической обработки данных
- 10.2 Особенности проектирования информационных систем
- Схемы разработки проекта
- 1. Предпроектные исследования
- 2 Постановка задачи
- 3 Проектирование системы
- Архитектура программного обеспечения
- Подсистема администрирования.
- Техническая архитектура
- Организационное обеспечение системы
- 4 Реализация и внедрение системы
- 10.3 Концепции автоматизации проектирования
- История развития сапр
- Классификация сапр
- Стратегическое развитие сапр Современное состояние сапр
- Направления разработки проектной составляющей сапр
- Разновидности сапр
- Математическое и информационное обеспечение сапр
- 11 Моделирование процесса управления
- 11.1 Основные определения
- Формальная запись системы с управлением
- 11.2 Модели систем автоматического управления
- Устойчивость движения систем
- Определение программного движения и управление движением
- 11.3 Модели автоматизированных систем управления
- Модели автоматизированных систем управления производственными процессами
- Модели автоматизированных систем управления предприятием